ECE 321-Quiz \#3 - Name

Filters - Spring 2023

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{200}{(s+2)(s+7)}\right) X
$$

Find $y(t)$ assuming

$$
x(t)=10+5 \cos (5 t)+14 \sin (5 t)
$$

DC

$$
\begin{aligned}
& \mathrm{s}=0 \\
& \mathrm{X}=10 \\
& Y=\left(\frac{200}{(s+2)(s+7)}\right)_{s=0} \cdot 10 \\
& Y=142.857
\end{aligned}
$$

AC

$$
\begin{aligned}
& \mathrm{s}=\mathrm{j} 5 \\
& \mathrm{X}=5-\mathrm{j} 14 \\
& Y=\left(\frac{200}{(s+2)(s+7)}\right)_{s=j 5} \cdot(5-\mathrm{j} 14) \\
& Y=-63.840-j 6.617 \\
& y(t)=-63.840 \cos (5 t)+6.617 \sin (5 t)
\end{aligned}
$$

The total answer is $\mathrm{DC}+\mathrm{AC}$

$$
y(t)=142.857-63.840 \cos (5 t)+6.617 \sin (5 t)
$$

2) Determine the transfer function for the following filter. Assume

- m is your birth month $(1 . .12)(\mathrm{C} 2=1 . .12 \mathrm{uF})$
- d is your birth date $(1 . .31)(\mathrm{C} 3=$.. 31 uF$)$

pole 1

$$
\frac{1}{R_{1} C_{1}}=\frac{1}{(1 k)(10 \mu)}=100
$$

pole 2

$$
\frac{1}{R_{2} C_{2}}=\frac{1}{(10 k)(5 \mu)}=20
$$

pole 3

$$
\frac{1}{R_{3} C_{3}}=\frac{1}{(100 k)(14 \mu)}=0.714
$$

DC gain

$$
D C=1+\frac{200 k}{100 k}=3
$$

The transfer function is then

$$
\begin{array}{ll}
Y=\left(\frac{3 \cdot 1000 \cdot 20 \cdot 0.714}{(s+1000)(s+20)(s+0.714)}\right) X & \text { format used in controls } \\
Y=\left(\frac{3}{\left(\frac{s}{1000}+1\right)\left(\frac{s}{20}+1\right)\left(\frac{s}{0.714}+1\right)}\right) X & \text { format used in communications }
\end{array}
$$

3) Determine the transfer function for the following filter. Assume

- m is your birth month $(1 . .12)(\mathrm{C} 2=\mathrm{C} 3=1 . .12 \mathrm{uF})$
- d is your birth date $(1 . .31)(\mathrm{C} 1=1 . .31 \mathrm{uF})$

1st pole (real)

$$
\frac{1}{R_{1} C_{1}}=\frac{1}{(1 k)(14 \mu F)}=71.429
$$

2nd pole (complex)

$$
\left.\begin{array}{l}
\mid \text { pole } \left\lvert\,=\frac{1}{R_{2} C_{2}}=\frac{1}{(10 k)(5 \mu F)}=20\right. \\
k=1+\frac{150 k}{100 k}=2.5 \\
3-k=2 \cos \theta \\
\theta=75.52^{0} \\
Y=\left\lvert\, \frac{2.5(71.429)(20)(20)}{(s+71.429)\left(s+20 / 75.52^{0}\right)\left(s+20 /-75.52^{0}\right)}\right.
\end{array}\right) .
$$

4) Give the transfer function for a filter which meets the following requirements

- $0.9<$ gain <1.1 for frequencies below $80 \mathrm{rad} / \mathrm{sec}$
- gain <0.2 for frequencies above $110 \mathrm{rad} / \mathrm{sec}$

Number of poles needed:

$$
\begin{aligned}
& \left(\frac{80}{110}\right)^{n}=0.2 \\
& n=5.054
\end{aligned}
$$

Let $\mathrm{n}=6$
Assume a Butterworth filter with a corner at $80 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{k}{\left(s+80 \angle \pm 15^{0}\right)\left(s+80 \angle \pm 45^{0}\right)\left(s+80 \angle \pm 75^{0}\right)}\right)
$$

Assume a Chebychev filter with a corner at $80 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{k}{\left(s+37.6 \angle \pm 36.1^{0}\right)\left(s+64.8 \angle \pm 69.8^{0}\right)\left(s+83.2 \angle \pm 84.4^{0}\right)}\right)
$$

Either solution is OK. Given time and Matlab, you can adjust the poles

5) Give the transfer function for a 7 th-order Butterworth low-pass filter with a corner at $100 \mathrm{rad} / \mathrm{sec}$ Angle of poles is

$$
\theta=\frac{180^{0}}{7}=25.714^{0}
$$

So

$$
G(s)=\left(\frac{100^{7}}{(s+100)\left(s+100 \angle \pm 25.71^{0}\right)\left(s+100 \angle \pm 51.43^{0}\right)\left(s+100 \angle \pm 77.14^{0}\right)}\right)
$$

6) The transfer function for a 4th-order Chebychev filter with a corner at $100 \mathrm{rad} / \mathrm{sec}$ is

$$
G(s)=\left(\frac{k}{\left(\left(s+72 \angle \pm 38.5^{0}\right)\left(s+111 \angle \pm 77.8^{0}\right)\right.}\right)
$$

Find the R's and C's to implement this filter as well as the resulting DC gain

C1	R1	C2	R2	DC Gain
$\mathbf{1 3 8 . 9 n F}$	(435 or 43.5k with a 100 k	$\mathbf{9 0 . 0 9 n F}$	$\mathbf{1 5 7 . 7 k}$ or 1577 with a 1 k	3.698 $1.435 * 2.577$

$$
\frac{1}{R C_{1}}=72
$$

$$
\mathrm{R}=100 \mathrm{k}
$$

$$
\mathrm{C} 1=138.9 \mathrm{nF}
$$

$$
3-k=2 \cos \theta
$$

$$
\theta_{1}=38.5^{0}
$$

$$
k=1.435
$$

$$
R_{1}=43.5 k
$$

$$
\frac{1}{R C_{2}}=111
$$

$$
\mathrm{R}=100 \mathrm{k}
$$

$$
\mathrm{C} 2=90.09 \mathrm{nF}
$$

$$
3-k=2 \cos \theta
$$

$$
\theta=77.8^{0}
$$

$$
k=2.577
$$

$$
R_{2}=157.7 k
$$

