ECE 321 - Homework \#1

Op Amp Amplifiers, Push-Pull Amplifiers. Due Monday, April 3rd Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

For all problems, assume you are using

- LM833 Op Amps (max current $=50 \mathrm{~mA})$
- 2 SC6144 transistors ($\beta=200$, 10A max, \mid Vbel $=0.7 \mathrm{~V}$), or
- TIP112 / TIP117 NPN and PNP power transistors (for a push-pull amplifier).
- $\beta=1000,3 \mathrm{~A}$ max, $\mathrm{IVbel}=1.4 \mathrm{~V}$

Amplfier:

1) Design a circuit to implement
a) $\quad Y=+4 X$
b) $\quad Y=-4 X$
c) $\quad \mathrm{Y}=12-4 \mathrm{X}=4(3-\mathrm{X})$

Mixer

2) Design a circuit to mix three signals together:

- $Y=6 A+3 B+7 C$

Do this in two steps

$$
\begin{aligned}
& X=\left(\frac{6 A+3 B+7 C}{16}\right) \\
& Y=16 X
\end{aligned}
$$

Create X using a weighted-average circuit
Create Y using a non-inverting amplifier
(there are other solutions)

Push-Pull Amplifier with Crossover Distortion

3) For the circuit below, calculate the voltages and currents when $\mathrm{V} 1=\{+0 \mathrm{~V},+1 \mathrm{~V},+2 \mathrm{~V}\}$

Problem 3-5: Amplifier with Crossover Distortion

4) Simulate in CircuitLab with

- V1 being a 4 Vpp sine wave at 1 kHz , or
- V0 being a 363 mV pp sine wave at 1 kHz (same result)

Push-Pull Amplifier without Crossover Distortion

5) For the circuit below, calculate the voltages and currents when $\mathrm{V} 1=\{+0 \mathrm{~V},+1 \mathrm{~V},+2 \mathrm{~V}\}$

Problem 5-6: Amplifier Withour Crossover Distortion

6) Simulate in CircuitLab with

- V1 being a 4 Vpp sine wave at 1 kHz , or
- V0 being a 363 mV pp sine wave at 1 kHz (same result)

An LM386 is a 700mW audio amplifier (essentially a push-pull anmplifier on a chip - provides better sound quality).

7) Build the two circuits above on a breadboard using a 9 V battery (or any $6-12 \mathrm{VDC}$ power source)

- Creating a 4.5 V reference signal (acts as circuit ground) capable of sourcing / sinking up to 25 mA
- A gain of 20 audio amplifier (LM386)

Include photo of your resulting breadboard circuit.

8) Check the functioning of the 4.5 V reference source (LM833) under load. Measure the output votlage with

- No load on the output.
- The output connected to +9 V through a 220 Ohm resistor (sinking 20.5 mA)
- The output connected to 0 V through a 220 Ohm resistor (sourcing 20.5 mA)

Checking the +4.5 V signal

- No-Load: 4.58 V
- 220 Ohms to $+9 \mathrm{~V}: 4.60 \mathrm{~V}$ (sink 20.0 mA$)$
- 220 Ohms to ground: 4.56 V (source 20.7 mA)

Comment: The op-amp creates a 4.5 V signal which can

- Source or sink 20 mA (measured)
- Source or sink 50 mA (data-sheets for LM833)

The output impedance of the op-amp appears to be

$$
R_{\text {out }} \approx\left(\frac{0.02 \mathrm{~V}}{20 \mathrm{~mA}}\right)=1 \Omega
$$

9) Check the functioning of the audio amplifier (LM386) under load (connected to an 8-Ohm speaker). Connect the input to a function generator (cell phone app preferred). Measure the gain when the input is

Go to OnlineFunctionGenerator.com to output a sine wave from my computer...

200 Hz sine wave

- $\operatorname{Vin}=19.1 \mathrm{mVrms}$
signal from the computer
- Vout $=347 \mathrm{mVrms}$ voltage across the speaker
- gain $=18.2$

1 kHz sine wave

- Vin $=19.2 \mathrm{mVrms}$
- Vout $=383 \mathrm{mVrms}$
across speaker
- gain $=19.94$

5 kHz sine wave

- $\operatorname{Vin}=19.0 \mathrm{mVrms}$
- Vout $=372 \mathrm{mVrms} \quad$ across speaker
- gain $=19.57$
note: Keep your circuit together - we'll use it for the next few weeks.

