ECE 321 - Homework \#2

Light \& Temperature Sensors, Audio \& Strain Sensors. Due Wednesday, April 12th
Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Temperature Sensors

Assume you are using a thermistor where the temperature - resistance relationship is

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C .

1) Design a linearizing circuit so that the resistance is approximately linear from -20 C to +20 C . Plot the resulting resitance vs. temperature relationship.

First write a Matlab m-file to compute how liner the resistor is:

```
function [J] = Probl(Z);
Ra = Z(1);
Rb = Z(2);
T1 = -20;
T2 = 0;
T3 = 20;
R1 = 1000* exp(3905/(T1+273) - 3905/298);
R2 = 1000*exp(3905/(T2+273) - 3905/298);
R3 = 1000* exp (3905/(T3+273) - 3905/298);
Z1 = (Ra+R1)* (Rb) / (Ra + R1 + Rb);
Z2 = (Ra+R2)* (Rb) / (Ra + R2 + Rb);
Z3 = (Ra+R3)*(Rb) / (Ra + R3 + Rb);
E = Z1 + Z3 - 2*Z2;
J = E^2;
end
```

Optimize with fminsearch()

```
>> [Z,e] = fminsearch('Prob1',[1000,2000])
Z = 1049.6 1518.9
e = 0
```

Plot the resulting resistance vs. temperature:

```
>> Ra = Z(1);
> Rb = Z(2);
>> T = [-20:0.01:20]';
>> T = [-25:0.01:25]';
>> R = 1000 * exp(3905 ./ (T+273) - 3905/298);
>> Z = (Ra+R)*Rb ./ (Ra+R+Rb);
>> plot(T,Z)
>> xlabel('Temperature (degrees C)');
>> ylabel('Ohms');
```


2) Using the linearizing circuit from problem 4, design a circuit which outputs

- 0 V at -20 C
- +5 V at +20 C
- Proportional in between.

Plot the resulting output voltage vs. temperature.

```
>> % -20C
>> T = -20;
>> R = 1000 * exp( 3905 ./ (T+273) - 3905/298);
>> Z1 = (Ra+R)*Rb ./ (Ra+R+Rb);
>> V1 = Z1 / (Z1+1000)*10
V1 = 5.7254
>> % +20C
>> T = 20;
>> R = 1000 * exp( 3905 ./ (T+273) - 3905/298);
>> Z2 = (Ra+R)*Rb ./ (Ra+R+Rb);
>> V2 = Z2 / (Z2+1000)*10
V2 = 4.7776
>> gain = (5-0) / (V2-V1)
gain = -5.2749
>> offset = (V1+V2)/2
offset = 5.2515
```


Audio / Strain Sensors

3) A strain sensor is connected to a metal rod to measure the force applied to the center of the beam. Assume

- The beam's thickness is 1 mm ,
- The beam's lenfgth is 75 mm ,
- The beam deflects 5 mm when a force of 100 N is applied to it, and
- The strain - resistance relationship of the strain sensor is

$$
R=120(1+2.14 \varepsilon) \Omega
$$

a) Determine the strain on the outside edge and the resistance when the beam deflects by 5 mm

Find the radius of curvature

$$
\begin{aligned}
& r^{2}=(r-5)^{2}+(37.5)^{2} \\
& r=143.125 \mathrm{~mm}
\end{aligned}
$$

the strain on the outside edge is

$$
\begin{aligned}
& \varepsilon=\left(\frac{0.5 \mathrm{~mm}}{143.125 \mathrm{~mm}}\right)=0.003493 \\
& R=120.89711 \Omega
\end{aligned}
$$

b) Design a circuit which outputs

- 0 V at 0 lb force and
- +10 V at 100 N force

Assume a voltage divider with a 120 Ohm resistor

$$
R(\varepsilon=0)=120 \Omega
$$

$$
V_{a}=2.5 \mathrm{~V}
$$

$$
\begin{aligned}
& R(\varepsilon=0.003493)=120.89711 \Omega \\
& V_{a}=\left(\frac{R}{120+R}\right) 5 \mathrm{~V}=2.503910 \mathrm{~V} \\
& \text { gain }=\left(\frac{10 \mathrm{~V}-0 \mathrm{~V}}{2.503910 \mathrm{~V}-2.50000 \mathrm{~V}}\right)=1074.09 \\
& \text { offset }=2.500 \mathrm{~V}
\end{aligned}
$$

A better option is to use four strain gages. This reduces the required gain by $4 x$ (268.52)

Theramin

The light sensor in your lab kit (also available in ECE 201) has a resistance varying from 2 k (room light) to $>200 \mathrm{k}$ (dark). The following circuit outputs a triangle wave with the frequency varying with light level (with R)
4) Frequency Control (R1): Determing the frequency of the output for

- $R 1=2000$ Ohms (light), and
- R1 $=200 \mathrm{k}$ Ohms (dark)

What range of frequency do you expect with this circuit if R 1 is a CdS light sensor which varies from 2 k to 200 k Ohms?

The period should be

$$
T=\left(R_{a}+2 R_{b}\right) \cdot C \cdot \ln (2)
$$

For R1 $=2 \mathrm{k}$

$$
\begin{aligned}
& T=(1000+1333) \cdot 1 \mu F \cdot \ln (2)=1.617 m s \\
& f=\frac{1}{T}=618.29 \mathrm{~Hz}
\end{aligned}
$$

For R1 $=200 \mathrm{k}$

$$
\begin{aligned}
& T=(1000+3921) \cdot 1 \mu F \cdot \ln (2)=3.411 \mathrm{~ms} \\
& f=\frac{1}{T}=293.13 \mathrm{~Hz}
\end{aligned}
$$

5) Determine the voltages at V1 and V2 using CircuitLab for

- $\mathrm{R} 1=2000$ Ohms (light), and
- $\mathrm{R} 1=200 \mathrm{k}$ Ohms (dark)

Circuitlab Simulation

Voltages when $\mathrm{R} 5=2 \mathrm{k}($ period $=2.6 \mathrm{~ms}, \mathrm{f}=384 \mathrm{~Hz})$

Voltages when R5 $=200 \mathrm{k}($ period $=6.3 \mathrm{~ms}, \mathrm{f}=158 \mathrm{~Hz})$

Lab

6) Build this circuit on your breadboard. Measure

- The frequency of V1 when R1 = light
- The frequency of V1 when R1 = dark

Output when Light

Output when Dark
7) Demo: Demonstrate this Theramin

