ECE 321 - Homework \#3

Calibration \& Noise, Active Filters. Due Monday, April 17th
Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Filters

1) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{80}{(s+5)(s+10)}\right) X
$$

a) What is the differential equation relating x and y ?

Cross multiply

$$
\left(s^{2}+15 s+50\right) Y=(80) X
$$

Note that sY means the derivative of Y

$$
y^{\prime \prime}+15 y^{\prime}+50 y=80 x
$$

b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=6+2 \cos (4 t)+3 \sin (4 t)
$$

Use superposition:
$\mathrm{x}(\mathrm{t})=6$

$$
\begin{align*}
& \mathrm{s}=0 \\
& \mathrm{X}=6 \\
& Y=\left(\frac{80}{(s+5)(s+10)}\right)_{s=0} . \tag{6}
\end{align*}
$$

$$
Y=9.6
$$

$$
x(t)=2 \cos (4 t)+3 \sin (4 t)
$$

$$
\mathrm{s}=\mathrm{j} 4
$$

$$
X=2-j 3
$$

$$
Y=\left(\frac{80}{(s+5)(s+10)}\right)_{s=j 4} \cdot(2-j 3)
$$

$$
Y=-3.7463-j 1.4829
$$

$$
y(t)=-3.7463 \cos (4 t)+1.4829 \sin (4 t)
$$

The total answer is $\mathrm{DC}+\mathrm{AC}$

$$
y(t)=9.6-3.7463 \cos (4 t)+1.4829 \sin (4 t)
$$

Filter Design

2) Give an op-amp circuit to implement the following filter

$$
Y=\left(\frac{400}{(s+2)(s+8)(s+10)}\right) X
$$

Rewrite as

$$
Y=\left(\frac{2}{s+2}\right)\left(\frac{8}{s+8}\right)\left(\frac{10}{s+10}\right)(2.5)
$$

Build using a 3-stage RC filter along with an amplifier with a gain of 2.5

- note: there are other solutions

3) Give an op-amp circuit to implement the following filter

$$
Y=\left(\frac{200}{\left(s^{2}+s+20\right)\left(s^{2}+5 s+30\right)}\right) X
$$

Design as a two-stage active low-pass filter. Rewrite in polar form

$$
Y=\left(\frac{200}{\left(s+4.4721 \angle \pm 83.58^{0}\right)\left(s+5.4772 \angle \pm 64.8427^{0}\right)}\right) X
$$

Stage 1:

$$
\begin{aligned}
& \frac{1}{R C}=4.4721 \\
& 3-k=2 \cos \theta \\
& k=2.7764
\end{aligned}
$$

Stage 2 :

$$
\begin{aligned}
& \frac{1}{R C}=5.4772 \\
& k=2.1498
\end{aligned}
$$

DC gain

$$
\begin{aligned}
& D C=0.333=2.7764 \cdot 2.1498 \cdot k_{3} \\
& k_{3}=0.0558
\end{aligned}
$$

or the output is 17.91 Y

4) Give the transfer function of a filter with the following gain vs. frequency

This has three resonances (three sets of complex poles:

Resonance \#1

- Frequency $=4 \mathrm{rad} / \mathrm{sec}=$ complex part of pole
- Bandwidth $=0.5 \mathrm{rad} / \mathrm{sec}=2 \mathrm{x}$ real part of pole

Resonance \#2

- Frequency $=11 \mathrm{rad} / \mathrm{sec}=$ complex part of pole
- Bandwidth $=1 \mathrm{rad} / \mathrm{sec}=2 \mathrm{x}$ real part of pole

Resonance \#3

- Frequency $=16 \mathrm{rad} / \mathrm{sec}=$ complex part of pole
- Bandwidth $=0.5 \mathrm{rad} / \mathrm{sec}=2 \mathrm{x}$ real part of pole

DC gain $=0($ zero at $\mathrm{s}=0)$

$$
G(s) \approx\left(\frac{k s}{(s+0.25 \pm j 4)(s+0.5 \pm j 11)(s+0.25 \pm j 16)}\right)
$$

Pick ' k ' so that the maximum gain is 1


```
>> p1 = -0.25 + j*4;
>> p2 = conj(p1);
>> p3 = -0.5 + j*11;
>> p4 = conj(p3);
>> p5 = -0.25 + j*16;
>> p6 = conj(p5);
>> w = [0:0.01:20]';
>> s = j*W;
>>G = s./ ( (s-p1).* (s-p2).* (s-p3).*(s-p4).*(s-p5).*(s-p6) );
>> max(G)
ans=7.9059e-005-4.3719e-006i
```

```
>> k = 1/abs(ans)
k = 1.2630e+004
>> G = k* s ./ ( (s-p1).*(s-p2).* (s-p3).*(s-p4).*(s-p5).*(s-p6) );
>> plot(w,abs(G))
```

Not exact, but close

Filter Design using fminsearch()

5) Design a filter of the form

$$
Y=\left(\frac{100 a}{(s+b)\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)}\right) X
$$

to give a gain vs. frequency as close to the following plot as possible over the range of $(0,10) \mathrm{rad} / \mathrm{sec}$.
Plot your filter's actual frequency response vs. it's ideal response (red line).

First, create an m-file which

- Is passed your guess for $\{\mathrm{a} . . \mathrm{f}\}$,
- Computes G(s),
- Computes Gd(s), and
- Returns the sum-squared difference.

```
% ECE 321 Homework #3
% Cost function for a filter
function [ J ] = costF( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    f = z(6);
    w = [0:0.01:9.9]' + 1e-6;
    s = j*W;
    Gideal = (0.3*W+0.4).* (w < 2) + 1* (w>2).* (w<4) + (3-0.5*W).* (w>4).* (w<6);
    G = 100*a./ ( (s+b).*(s.^2 + c*s + d).*(s.^2 + e*s + f) );
    e = abs(Gideal) - abs(G);
    J = sum(e .^ 2);
    plot(w,abs(Gideal),'r',w, abs(G),'b');
    ylim([0,1.2]);
    pause(0.01);
end
```

Check this from the command window:

```
>> costF([0.5,2,3,4,5,6])
ans=
    257.5852
```


Now let Matlab optimize the parameters:

```
>> [Z,e] = fminsearch('costF',[0.5,2,3,4,5,6])
Z = ccccccc
e = 2.7239
```

Run again using the previous answer (just incase Matlab wasn't done yet)

```
>> [Z,e] = fminsearch('costF',Z)
\begin{tabular}{ccccccc} 
& a & b & c & d & C & e \\
\(\mathrm{Z}=\) & 10.8526 & 14.2080 & 2.0776 & 6.8006 & 1.2423 & 19.5714
\end{tabular}
```

This looks like the best matlab can do

$$
Y=\left(\frac{100 a}{(s+b)\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)}\right) X
$$

$$
\begin{array}{ccccccc}
& \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{Z}= & 10.8526 & 14.2080 & 2.0776 & 6.8006 & 1.2423 & 19.5714
\end{array}
$$

6) Design circuit to implement the filter you designed in problem \#7

Do this in three stages

$$
\begin{aligned}
& Y=\left(\frac{1085.26}{(s+14.2080)\left(s^{2}+2.0776 s+6.8006\right)\left(s^{2}+1.2423 s+19.5714\right)}\right) X \\
& Y=\left(\frac{k_{1}}{s+14.2080}\right)\left(\frac{k_{2}}{s^{2}+2.0776 s+6.8006}\right)\left(\frac{k_{3}}{s^{2}+1.2423 s+19.5714}\right) X \\
& Y=\left(\frac{k_{1}}{s+14.2080}\right)\left(\frac{k_{2}}{s+2.6078 \angle \pm 66.53^{0}}\right)\left(\frac{k_{3}}{s+4.424 \angle \pm 81.929^{0}}\right) X
\end{aligned}
$$

Stage \#1:

$$
1 / \mathrm{RC}=14.208
$$

Stage \#2

$$
1 / \mathrm{RC}=2.6078
$$

$$
\mathrm{k}=2.2035
$$

Stage \#3

$$
1 / \mathrm{RC}=4.424
$$

$$
\mathrm{k}=2.7192
$$

7) Check your filter using CircuitLab

Kind of hard to tell since the x-axis is on a log-scale. Sort of looks the same though...

