ECE 321 - Homework \#5

DC Analsis of Transtor Amplfiers, 2-Ports, CE Amplifiers. Due Monday, May 1st Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

1) Determine the Q-point for the following transistor circuit. Assume C's are large and assume 3904 transistors:

- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\beta=200$

$$
\begin{aligned}
& V_{b}=V_{t h}=\left(\frac{300 k}{300 k+700 k}\right) 12 \mathrm{~V}=3.60 \mathrm{~V} \\
& R_{b}=300 \mathrm{k}| | 700 \mathrm{k}=210 \mathrm{k} \\
& I_{b}=\left(\frac{V_{b}-0.7}{R_{b}+(1+\beta) R_{e}}\right)=4.739 \mu \mathrm{~A} \\
& I_{c}=200 I_{b}=947.7 \mu \mathrm{~A} \\
& V_{c e}=12 \mathrm{~V}-I_{c} R_{c}-\left(I_{b}+I_{c}\right) R_{e}=6.304 \mathrm{~V}
\end{aligned}
$$

The Q-point is

- $\mathrm{Vce}=6.304 \mathrm{~V}$
- $\mathrm{Ic}=947.7 \mathrm{uA}$

2) Modify this circuit so that

- The Q-point is stabilized for variations in β, and
- The Q-point is Vce $=5.0 \mathrm{~V}$

Stabilize the Q-Point

$$
\begin{aligned}
& (1+\beta) R_{e} \gg R_{b} \\
& 402 k \gg R_{b}
\end{aligned}
$$

Let $\mathrm{Rb}=40 \mathrm{k}$
$\mathrm{Vce}=5.00 \mathrm{~V}$

$$
\begin{aligned}
& V_{c e}=12-I_{c} R_{c}-\left(I_{b}+I_{c}\right) R_{e} \\
& 5 V=12 V-4000 I_{c}-2000\left(\frac{I_{c}}{200}+I_{c}\right) \\
& I_{c}=1.165 \mathrm{~mA} \\
& I_{b}=\frac{I_{c}}{200}=5.824 \mu \mathrm{~A} \\
& V_{b}=I_{b} R_{b}+0.7+\left(I_{b}+I_{c}\right) R_{e} \\
& V_{b}=3.274 \mathrm{~V}
\end{aligned}
$$

Finding R1 and R2

$$
\begin{aligned}
& R_{1} \| R_{2}=\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)=40 \mathrm{k} \\
& \left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=3.274 \mathrm{~V}
\end{aligned}
$$

Solving

$$
\begin{aligned}
& R_{1}=\left(\frac{12 V}{3.274 V}\right) 40 k=146.6 k \Omega \\
& R_{2}=55.01 \mathrm{k} \Omega
\end{aligned}
$$

3) Draw the small-signal model for the circuit of problem \#2 connected as a common emitter amplifier (below). From this, determine the 2-port model

Using $\mathrm{n}=1.45$ (from CircuitLab)

$$
\begin{aligned}
& r_{f}=\left(\frac{n V_{T}}{I_{b}}\right)=\left(\frac{1.45 \cdot 26 m \mathrm{~V}}{5.824 \mu \mathrm{~A}}\right)=\left(\frac{0.038 \mathrm{~V}}{5.824 \mu \mathrm{~A}}\right)=6525 \Omega \\
& R_{\text {in }}=146.6 \mathrm{k}| | 55.01 \mathrm{k} \mid 6525=5609.9 \Omega \\
& A_{\text {in }}=0 \\
& R_{\text {out }}=4 k \\
& A_{\text {out }}=-\frac{\beta R_{c}}{r_{f}}=-122.60
\end{aligned}
$$

4) Simulate this circuit in CircuitLab. Verify each of the 2-port parameters at 1 kHz

- Rin
- Rout
- Ao

Simulation	R8	R5	gain	
Ao	0	10 M	144.4	Ao $=144.4$ vs. 122.60
Rin	5 k	10 M	72.15	Rin $=5020$ vs. 5609
Rout	0	4 k	73.89	Rout $=3817$ vs 4000

Sample Calculations

$72.15=\left(\frac{R_{i n}}{R_{i n}+5000}\right) 144.4$
$R_{\text {in }}=\left(\frac{72.15}{144.4-72.15}\right) \cdot 5000 \Omega$
$73.89=\left(\frac{4 k}{4 k+R_{\text {out }}}\right) 144.4$
$R_{\text {out }}=\left(\frac{144.4-73.89}{73.89}\right) \cdot 4 k \Omega$

5) Remove Ce. Now draw the small-signal model for the circuit of problem \#2. From this, determine the 2-port model for the Common Emitter amplifier

Rin:

$$
\begin{aligned}
& \left.R_{\text {in }}=146.6 k| | 55.01 k| |\right) 6525+2000 \cdot(1+\beta) \\
& R_{\text {in }}=21.55 k
\end{aligned}
$$

$\mathrm{Ai}=0$
Rout $=4 \mathrm{k}$

$$
A_{o}=-(200)(4000)\left(\frac{1}{6525+2000 \cdot \beta+1}\right)
$$

$$
A_{o}=-1.9583
$$

6) Simulate this circuit in CircuitLab. Verify each of the 2-port parameters at 1 kHz

- Rin
- Rout
- Ao

Simulation	R8	R5	gain	Simulation Result
Ao	0	10 M	1.962	Ao $=1.962$ 1.9583 calculated
Rin	22 k	10 M	1.152	Rin $=31.22 \mathrm{k}$ 21.55 k calculated
Rout	0	4 k	0.9821	Rout $=3991$ 4000 calculated

