Poles, Zeros, and Frequency Response

With the previous circuits, you can build filters with

- Real poles
- Complex Poles, and
- Zeros at $\mathrm{s}=0$

Filter design uses this to places poles and zeros to give a desired frequency response. In this lecture we look at how the poles and zeros affect the gain vs. frequency for a filter.

Analysis: Given a filter, find the gain vs. frequency.
This is actually really easy: just plug it into Matlab. For example, plot the gain vs. frequency for

$$
Y=\left(\frac{2 s}{s^{2}+2 s+10}\right) X
$$

for

$$
0<\omega<10 \mathrm{rad} / \mathrm{sec}
$$

In Matlab:

```
-->w = [0:0.01:10]';
-->S = j*W;
-->G = 2*s ./ (s.^2 + 2*s + 10);
-->plot(w,abs(G));
-->xlabel('Frequency (rad/sec)');
-->ylabel('Gain');
```


Design: Given a desired frequency response, design a filter to match (or come close) to your design.
This gets a lot trickier. To do this, let's first look at how poles and zeros affect the gain of a filter.

Let's start with about the simplest filter you can make:

$$
Y=\left(\frac{1}{s+a}\right) X
$$

The frequency response is obtained by letting $s \rightarrow j \omega$:

$$
Y=\left(\frac{1}{j \omega+a}\right) X
$$

Graphically, the gain is equal to the vector ' 1 ' divided by the vector ' $j \omega+a$ '. The latter term is equal to the vector from the pole at -a to the origin (a) plus the vector $j \omega$.

Since you're dividing by $j \omega+a$, the gain is

- A maximum when you're closest to the pole (i.e. at $w=0$).
- Zero when you're far away from the pole (at infinity), and
- Down by $\sqrt{2}$ when the frequency is ja

Note that this also works for comples polex. If your filter has a pole at $\mathrm{s}=-1+\mathrm{j} 10$:

$$
Y=\left(\frac{1}{s+1-j 10}\right) X
$$

then

- The gain will be a maximum at $\mathrm{s}=\mathrm{j} 10$ (the closest point on the jw axis to the pole)
- The gain drops by $\sqrt{2}$ when at $\mathrm{s}=\mathrm{j} 9$ and $\mathrm{s}=\mathrm{j} 11$ (when you are $1 \mathrm{rad} / \mathrm{sec}$ away from the max gain point. 1 is the real part of the pole)

A generalized filter will look something like

$$
Y=k\left(\frac{\left(s+z_{1}\right)\left(s+z_{2}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right)}\right) X
$$

where

- zi are the zeros,
- pi are the poles, and
- k is a constant gain

The graphical interpriation for this filter is

$$
\text { gain }=k \cdot \frac{\Pi(\text { distance from jw to the zeros })}{\Pi(\text { distance from } \mathrm{jw} \text { to the poles })}
$$

Note that

- If you're close to a zero, the gain is small (multiply by a small number)
- If you're close to a pole, the gain is large (divide by a small number)

So, a design strategy could be

- Place zeros near frequencies you want to reject
- Place poles near frequencies you want to pass.

To do this, the Matlab fminsearch() can be useful.

Problem: Design a filter to approximate an ideal low-pass filter with a gain of

$$
G_{\text {ideal }}(s) \approx\left\{\begin{array}{cc}
1 & \omega<4 \\
0 & \text { otherwise }
\end{array}\right.
$$

With fminsearch(), you first assume the form of the filter. Let's start by assuming a 4th-order filter with real poles:

$$
G(s)=\left(\frac{a}{(s+b)(s+c)(s+d)(s+e)}\right)
$$

To determine how good this filter, define a cost function to be the sum-squared difference in the two filters

$$
\begin{aligned}
& E(j \omega)=\left|G_{\text {ideal }}(j \omega)\right|-|G(j \omega)| \\
& J=\int_{0}^{10} E^{2}(j \omega) \cdot d \omega
\end{aligned}
$$

where the integration range is somewhat arbitrary (it covers the pass band and some of the reject region)

A Matlab m-file to do this is

```
function [ J ] = costf( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    w = [0:0.01:10]';
    s = j*W;
    Gideal = 1 .* (w < 4);
    G = a ./ ( (s+b) .* (s+c) .* (s+d) .* (s+e) );
    E = abs(Gideal) - abs(G);
    J = sum(E.^ 2);
    plot(w, abs(Gideal),w,abs(G));
    pause(0.01);
end
```

If you make your initial guess

$$
G(s)=\left(\frac{100}{(s+2)(s+3)(s+4)(s+5)}\right)
$$

then

```
>> J = costf([100,2,3,4,5])
J = 145.8354
```

If you let fminsearch() guess and guess to minimize J you get

```
>> [a,b] = fminsearch('costf',[100,2,3,4,5])
a =
    697.8575 4.9165 4.9165 4.9165 4.9165
b =
    55.3564
```


The best Matlab could do if you constrain it to have real poles is to place the four poles at

$$
G(s)=\left(\frac{697}{(s+4.916)^{4}}\right)
$$

If you plot the pole location on the s-plane along with the gain (drawn sideways so that the y-axis is jw or frequency), it looks like this:

Pole Location in the s-plane along with the gain vs. frequency drawn sideways

Note that

- There are four poles at $\mathrm{s}=-4.91$.
- The gain is large when you're close to the pole
- The grain drops as you move away from the pole (drops as $1 /$ distance ${ }^{4}$)

It's also not a very good filter: you can't do much with just real poles.

Complex Poles: Instead, let G(s) be of the form

$$
G(s)=\left(\frac{a}{s^{4}+b s^{3}+c s^{2}+d s+e}\right)
$$

An m-file for this filter is

```
function [ J ] = costf( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    w = [0:0.01:10]';
    s = j*w;
    Gideal = 1 .* (w < 4);
    G = a ./ (s.^4 + b*s.^3 + c*s.^2 + d*s + e );
    E = abs(Gideal) - abs(G);
    J = sum(E .^ 2);
    plot(w,abs(Gideal),w,abs(G));
    pause(0.01);
end
```

Minimizing the cost:

```
>> [a,b] = fminsearch('costf',10*rand(1,5))
a =
    36.6716 -1.3547 13.7226 -24.3743 39.3082
b =
    13.0720
```

meaning

$$
G(s)=\left(\frac{36.67}{s^{4}+1.3547 s^{3}+13.7226 s^{2}+24.3743 s+39.3}\right)
$$

The roots of the denominator are:

```
>> roots([1,a(2:5)])
ans =
```

$$
\begin{array}{r}
0.4157+3.4910 i \\
0.4157-3.4910 i \\
-1.0930+1.4091 i \\
-1.0930-1.4091 i
\end{array}
$$

which is unstable. Reflecting the unstable poles to the left-half plane gives

$$
G(s)=\left(\frac{36.67}{(s+0.41 \pm j 3.49)(s+1.09 \pm j 1.41)}\right)
$$

The gain vs. frequency and pole location looks like:

Note that to design an 'optimal' low-pass filter with 4 poles,

- You place the 4 poles in the pass-band region $(-4$ to $+4 \mathrm{rad} / \mathrm{sec})$
- Close to the jw axis
- Spread out so that as you go from - j 4 to +j 4 , you're always close to a pole (and the gain is large)
- As you move past $4 \mathrm{rad} / \mathrm{sec}$, the distance to the poles increases, resulting in the gain dropping.

You can to a lot better if you're allowed to use complex poles.

Just for fun, try one more filter of the form

$$
G(s)=\left(\frac{a \cdot c \cdot e}{(s+a)\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right)
$$

This has five poles along with a DC gain of one:

```
function [ J ] = costf( Z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e=z(5);
    w = [0:0.01:10]';
    s = j*W;
    Gideal = 1 .* (w < 4);
    G = a*c*e./ ( (s+a) .* (s.^2 + b*s + c) .* (s.^2 + d*s + e ) );
    G = abs(G);
    G2 = max (0, G-1);
    E = abs(Gideal) - abs(G);
    J = sum(E.^ 2) + 10 * sum(G2.^ 2);
    plot(w, abs(Gideal),w, abs(G)) ;
    pause(0.01);
end
```

Running in Matlab:

```
>> [a,b] = fminsearch('costf',10*rand(1,5))
a =
    1.2226 0.6761 13.5006 1.8855 5.7318
b =
    9.6110
```

meaning

$$
G(s)=\left(\frac{96.4}{(s+1.222)\left(s^{2}+0.6761 s+13.5\right)\left(s^{2}+1.88 s+5.73\right)}\right)
$$

Plotting the pole location vs. gain like before:

Pole Location \& Gain (drawn sidweways)

Note that there is definately a pattern here:

- You scatter N poles in the pass-band
- It appears the poles are placed on an ellipse - farthest away from the jw axis at $\mathrm{w}=0$ and closer as you move away from w $=0$

