
Butterworth, Elliptic, Chebychev Filters

Objective:

Know what each filter tries to optimize

Know how these filters compare

An Nth-order RC filter is  the closest appoximation to an ideal low pass filter subject to

There are N poles

All poles are real

There are no zeros

The maximum gain is 1.000

An Nth-order Butterworth filter is the closest appoximation to an ideal low pass filter subject to

There are N poles

There are no zeros

The maximum gain cannot exceed 1.0000

An Nth-order Type-1 Chebychev filter is the closest approximation to an ideal low pass filter subject to

There are N poles

There are no zeros

The maximum gain cannot exceed  .  (Some ripple is permitted).1 + ε

An Nth-order Type-2 Chebychev filter is the closest approximation to an ideal low pass filter subject to

There are N poles

There are N zeros

The maximum gain cannot exceed  .  (Some ripple is permitted).1 + ε1

The maximum gain the band reject region cannot exceed ε2
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RC Filter

An n-pole RC filter has all n-poles on the real axis.

It's advantage is you can build it with a passive RC filter (good)

It's problem is it's a pretty poor filter.

For example,  the gain of 

G(s) = 


10

s+10



n

for n=1, 2, 3, and 4 is shown below.  Note that

As n increases, the high-frequency gain gets smaller and smaller (good)

However, the gain below 5 rad/sec starts to droop more an more (bad)

-->w = [0:0.1:50]';
-->s = j*w;
-->G = 10 ./ (s+10);
-->plot(w,abs([G,G.^2,G.^3,G.^4]));
-->xlabel('rad/sec');
-->ylabel('gain');

Gain of and RC filter for n=1 (blue) to n=4 (cyan)
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Butterworth Filter:

If you use complex poles, you can do better.  For example, take the case of n=5.

A 5th-order RC filter with a corner at 10 rad/sec is

G = 


10

s+10



5

One of these poles has to be real.  The other four, however, could be moved along the circle centered at the origin

with a radius of 10.  As you increase the angle of these poles, the gain at j10 increases.  If you go too far, the gain

at j10 starts to go above one.

A Butterworth filter is the farthest you can slide the poles while keeping the maximum gain less than one

As it turns out, the optimal filter (i.e. the closest to an ideal low-pass filter) with

N poles

No zeros, and

No resonance (max gain <= 1.0000)

has N poles with

The amplitude of the poles is equal to the corner frequency, and

The angle between the poles is

φ =
1800

N

If the corner is 1 rad/sec, for example, the poles for a Butterworth filter are

N 2 3 4 5

(s+a) 1∠ ± 450 1 1∠ ± 22.50 −1

1∠ ± 600 1∠ ± 67.50 −1∠ ± 360

−1∠ ± 720

Example:  Design a 4th-order Butterworth low-pass filter with a corner at 10 rad/sec.

Solution:  The poles are 45 degrees apart

φ =
1800

4
= 450

The amplitude of the poles is the corner frequency (10 rad/sec).  Hence

G(s) =





104


s+10∠22.50 



s+10∠−22.50 



s+10∠67.50 



s+10∠−67.50 








or since complex poles are always in complex conjugate pairs,
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G(s) =





104


s+10∠±22.50 



s+10∠±67.50 







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The resulting gain vs. frequency is then

p1 = 10 * exp(j*22.5*pi/180);
p2 = conj(p1);
p3 = 10 * exp(j*67.5*pi/180);
p4 = conj(p3);

w = [0:0.01:30]';
s = j*w;
 
Gd = 1 * (w < 10);
 
Gs = 10^4  ./ ( (s+p1) .* (s+p2) .* (s+p3) .* (s+p4) );
 
plot(w,abs(Gs),'b',w,abs(Gd),'m');
xlabel('Frequency (rad/sec)');
ylabel('Gain');
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Gain of a Butterworth Filter for n=2 (red), 3 (magenta), 4 (blue), 5 (green)

Note that with a Butteworth filter, 

The more poles you have the closer it gets to an ideal low-pass filter.

All poles have the same amplitude

All poles have an equal spacing between them
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Type-1 Chebychev Filter

A Chebuchev filter is similar to a Butterworth filter, except you allow the gain to be slightly larger than one at

some point.  In return, you get a filter which is closer to ideal.

Unlike a Butterworth filter, there are an infinite number of Chebychev filters:  one for each resonance you allow.

The poles for a Type-1 Chebychev filter with a corner at 1 rad/sec follow and 0.2 ripple are given below.

N=2 N=3 N=4 N=5 N=6

zeros none none none none none

poles −1.60∠ ± 50.70 −0.85

−1.21∠ ± 69.50

−0.72∠ ± 38.50

−1.11∠ ± 77.80

−0.48

−0.76∠ ± 59.30

−1.06∠ ± 82.00

−0.47∠ ± 36.10

−0.81∠ ± 69.80

−1.04∠ ± 84.40

n = 2 n = 3 n = 4

| pole | degrees | pole | degrees | pole | degrees

   1.5967184    50.654966      1.2130758    69.505382      1.1075629    77.815449  

    0.8494427        0.7208251    38.470416  

n = 5 n = 6 n = 7

| pole | degrees | pole | degrees | pole | degrees

    1.0649391    82.007862      1.0435768    84.37776       1.0313304    85.837824  

    0.7583392    59.258028      0.8099629    69.827002      0.8511278    75.734189  

    0.4791522        0.4722575    36.104208      0.5490110    56.492848  

    0.3363897    

n = 8 n = 9 n = 10

| pole | degrees | pole | degrees | pole | degrees

    1.0236433    86.797811      1.0184934    87.461528      1.0148704    87.939028  

    0.8816164    79.356269      0.9041474    81.740491      0.9210463    83.396355  

    0.6281433    67.171719      0.6932953    73.319611      0.7446030  77.199244  

    0.3520881    35.268226      0.4294884    55.363465      0.5104322   65.966884  

    0.2597740        0.2809011  34.879934  
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Example:  Design a 4th-order Chebuchev filter with

A DC gain of 1.000

A ripple of 0.2, and

A corner at 10 rad/sec

Solution:

G(s) =





7.22⋅11.12


s+7.2∠±38.50 



s+11.1∠±77.80 








or

G(s) =





6387


s

2+11.27s+51.84

s

2+4.69s+123.21






Checking the gain vs. frequency in Matlab

   p1 = 7.2 * exp(j*38.5*pi/180);
   p2 = conj(p1);
   p3 = 11.1 * exp(j*77.8*pi/180);
   p4 = conj(p3);

   w = [0:0.01:30]';
   s = j*w;
   
   Gd = 1 * (w < 10) .* (w > -10);
   
   Gs = 7.2^2 * 11.1^2  ./ ( (s+p1) .* (s+p2) .* (s+p3) .* (s+p4) );

   plot(w,abs(Gs),'b',w,abs(Gd),'m');
   xlabel('Frequency (rad/sec)');
   ylabel('Gain');

Gain vs. Frequency for a 4th-Order Chebychev Filter with a Corner at 10 rad/sec
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Elliptic Filters:

An Elliptic filter adds zeros to force the gain to drop quickly at the corner.  The tradeoff is the highfrequency

gain doesn't roll off like they do with Butterworth of Type-1 Chebychev filters.  An elliptic filter with an

attenuation of 60dB in the reject region follows:

Pass W1 = 0 to 1 W1 = 0 to 1 W1 = 0 to 1 W1 = 0 to 1

Reject W2 = 9 to infinity W2 = 3 to infinity W2 = 1.7 to infinity W2 = 1.3 to infinity

zeros j 9.919 j3.246

j7.705

j1.831

j2.907

j1.316

j1.524

j2.491

poles -0.391 + j1.242

-0.942

-0.572 + j0.467

-0.221 + j1.076

-0.494

-0.365 + j0.660

-0.143 + j1.005

-0.437

-0.331 + j0.583

-0.159 + j0.907

-0.040 + j1.024

Note that zeros are placed on the jw axis.  These force the gain to zero at these frequencies - and close to zero

near them.  With the use of complex zeros, you can force the gain to drop more quickly past the passband.

TheThe drawback is the gain 'just' remains below 0.001 rather than rolling off to zero as it would do with all

poles and no zeros.

Also note that the closer the reject region is to the passband, the more poles and zeros are required.

Comparison of Gains vs. Frequency:
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Gain vs. Frequency for the Butterworth filter (blue), Chebychev filter (green), and Elliptic filter (red).

In the above gain vs. frequency, note that the Elliptic filter has a gain which goes to zero at 2.078 and 3.212

rad/sec.  In the reject region, the gain is less than 0.001 - which was one of the design constraints in the elliptic

filter presented here.

The Chebychev and Butterworth filter both have gains that keep dropping off as  since these filters have fourω−4

poles and no zeros.  If you want the gain to keep rolling off, the Butterworth or Elliptic filters are better.  0.001 is

small enough, the Elliptic filter is the closest approximation to an ideal low pass filter.

8th-Order Filters
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Pole location of a Butterworth filer (blue) and Chebuchef filter (green) along with the unit circle.

The gain vs. frequency is show below.  Note that the Chebychev filter trades off ripple in the passband for a

faster rolloff outside the passband.  They both have a gain which drop off as  with eight poles and no zeros.ω−8
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SciLab Code:

zpell - lowpass elliptic filter 

Calling Sequence 

[zeros,poles,gain]=zpell(epsilon,A,omegac,omegar)   

Parameters 

 epsilon : real : ripple of filter in pass band ( 0<epsilon<1 ) 
 A : real : attenuation of filter in stop band ( A>1 ) 
 omegac : real : pass band cut-off frequency in Hertz 
 omegar : real : stop band cut-off frequency in Hertz 
 zeros : resulting zeros of filter 
 poles : resulting poles of filter 
 gain : resulting gain of filter 

Description 

Poles and zeros of prototype lowpass elliptic filter.  gain  is the gain of the
filter 

zpbutt - Butterworth analog filter 

Calling Sequence 

[pols,gain]=zpbutt(n,omegac)   

Parameters 

 n : integer (filter order) 
 omegac : real (cut-off frequency in Hertz) 
 pols : resulting poles of filter 
 gain : resulting gain of filter 

Description 

computes the poles of a Butterworth analog filter of order  n  and cutoff
frequency omegac transfer function H(s) is calculated by  
H(s)=gain/real(poly(pols,'s')) 

zpch1 - Chebyshev analog filter 

Calling Sequence 

[poles,gain]=zpch1(n,epsilon,omegac)   

Parameters 

 n : integer (filter order) 
 epsilon : real : ripple in the pass band ( 0<epsilon<1 ) 
 omegac : real : cut-off frequency in Hertz 
 poles : resulting filter poles 
 gain : resulting filter gain 

Description 
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Poles of a Type 1 Chebyshev analog filter. The transfer function is given by : 

 H(s)=gain/poly(poles,'s')
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