Analog Computers

Problem:

Design a circuit to implement a generic proper transfer function

$$
Y=\left(\frac{b_{n-1} s^{n-1}+b_{n-2} s^{n-2}+\ldots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+a_{n-2} s^{n-2}+\ldots+a_{1} s+a_{0}}\right) U
$$

Solution:

There are many. This is one way to do it. Just to make it more managable, assume a 3rd-order system

$$
Y=\left(\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}\right) U
$$

Step 1: Change the problem. Create a dummy state, X

$$
\begin{aligned}
& X=\left(\frac{1}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}\right) U \\
& Y=\left(b_{2} s^{2}+b_{1} s+b_{0}\right) X
\end{aligned}
$$

Step 2: Cross multiply and solve for the highest derivative of X:

$$
\begin{aligned}
& X=\left(\frac{1}{s^{3}+a_{2} s^{2}+a_{1} s+a_{00}}\right) U \\
& \left(s^{3}+a_{2} s^{2}+a_{1} s+a_{0}\right) X=U \\
& s^{3} X=-\left(a_{2} s^{2}+a_{1} s+a_{0}\right) X+U
\end{aligned}
$$

Step 3: Given snX , solve for X by integrating n times (notation: X ' means $\mathrm{dx} / \mathrm{dt}$)

Step 4: Create X'" using the differential equation from step 2:

Step 5: Now that you know X and its detivatives, create Y :

$$
Y=\left(b_{2} s^{2}+b_{1} s+b_{0}\right) X
$$

Step 6) Convert to analog computer notation. Here, a triangle means an amplifuer:

$$
Y=-3 A-4 B
$$

whereas a triangle with a box means integrator:

$Y=(1 / s)(-3 A-4 B)$
Applying this to the above block diagram:

Now comes the tricky part: Play with the gains so that they are all negative (we'll be using inverting amplifiers). You might have to add in a inverter to get the gains to balance out.

- For the feedback loops, there net gain should be negative. Make sure there are an odd number of op-amps in each loop.
- For the output gains, if the net gain should be positive, make sure there are an even number of op-amps in each path from U to Y

Now convert to an op-amp circuit.

Final Op-Amp Circuit: All units M Ohms and uF.

This technique works well if the poles are close to 1.000 . If the poles are not close to 1 ,

- Scale the poles so that they are close to 1.000
- Design the analog computer using the previous techniques
- Scale the circuit by making C larger (slower) or smaller (faster) to return to the original pole locations.

