2-Port Models

Thevenin Equivalent:

Thevenin equivalents are a tool where you simplify a circuit to a voltage source and a resistance. The idea is that for any linear circuit, the output voltage/current relationship follows a straight line. For example, consider the following circuit:

Sample Circuit

Place a resistor across the load and vary it from zero to infinity. The voltage and current at the load will change in a linear fashion - with the result termed the load line.

Thevenin equivalents replace the circuit with a simple model which follows the same load line. The way you find the Thevenin terms are:

- V_{th} : The voltage at the load with $\mathrm{R}_{\mathrm{L}}=$ infinity (7V)
- R_{th} : The resistance looking in with sources turned off: $3 \mathrm{k} \| 7 \mathrm{k}=2.1 \mathrm{k}$
- $\mathrm{I}_{\text {short }}$: The current I_{L} when $\mathrm{RL}=0 . \quad \mathrm{I}_{\text {short }}=\mathrm{V}_{\mathrm{th}} / \mathrm{R}_{\mathrm{th}}: \quad \mathrm{I}_{\text {short }}=10 \mathrm{~V} / 3 \mathrm{~V}=3.33 \mathrm{~mA}$

Thevenin Equivalent for Above Circuit along with its Load Line

2-Port Models

A 2-port model is a Thevenin equivalent for a circuit with an input and an output - such as an amplifier. Since the input can affect the output, the Thevenin voltage source at the output is replaced with a voltage controlled voltage source. Sometimes, the output can also affect the input. Likewise, the input has a like Thevenin equivalent: a Thevenin resistance along with a voltage-controlled voltage-source:

2-Port Model
Like a Thevenin equivalent, 2-Port models are tools which help with circuit analysis:

- Thevenin equivalents can make circuit analysis much simpler.
- 2-Port models can make multi-stage amplifier analysis much simpler

2-Port Parameters:

To determine each of the four 2-port model parameters, four tests are run:

- Ai: Set Vout $=1 \mathrm{~V}$ and measure $\mathrm{Vin} . \mathrm{Ai}=\mathrm{Vin}$
- Ao: Set Vin = 1V and measure Vout. Ao = Vout
- Rin: Set Vout $=0 \mathrm{~V}$ and measure the resistance seen at the input
- Rout: Set Vin $=0 \mathrm{~V}$ and measure the resistance seen at the output

Essentially, devise a test on the 2-port model to find a given parameter. Do the same with the circuit you are analyzing.

Example: Determine the 2-port model for the following circuit:

Ai: Set Vout $=1 \mathrm{~V}$, measure the voltage at $\mathrm{Vin} . \mathrm{Ai}=$ Vin

- $\mathrm{Ai}=0.6$

Circuit

2-Port Model

Ao: Set Vin $=0 \mathrm{~V}$, measure the voltage at Vout. Ao $=$ Vout

- $\mathrm{Ao}=0.75$

Rin: Set Vout $=0 V$, measure the resistance at Vin.

- $R_{\text {in }}=1 k+3 k| | 2 k=2.2 k \Omega$

Rout: Set Vin $=0 \mathrm{~V}$, measure the resistance at Vout

- Rout $=2 k+1 k| | 3 k=2750 \Omega$

So, the 2-port model is:

Sometimes the Thevenin resistance isn't so obvious. In this case, you might have to apply at test voltage, compute the resulting current, and computer resistance as $\mathrm{R}=\mathrm{V} / \mathrm{I}$

Example 2: Find the 2-port model for the following circuit:

Ai: Set Vout $=1 \mathrm{~V}$, measure Vin

Compute Vx using voltage nodes:

$$
\begin{aligned}
& \left(\frac{V_{x}}{1 k+2 k}\right)+\left(\frac{V_{x}}{3 k}\right)-200\left(\frac{0-V_{x}}{3 k}\right)=0 \\
& V_{x}=0
\end{aligned}
$$

So, $\mathbf{A i}=\mathbf{0}$

Ao: Set Vin $=1 \mathrm{~V}$, measure the voltage at Vo

Find Vx using voltage nodes:

$$
\begin{aligned}
& \left(\frac{V_{x}-1}{2 k}\right)+\left(\frac{V_{x}}{3 k}\right)-200\left(\frac{1-V_{x}}{3 k}\right)=0 \\
& V_{x}=0.9951 \mathrm{~V} \\
& I_{b}=\left(\frac{1-V_{x}}{2 k}\right)=2.469 \mu \mathrm{~A} \\
& V_{o}=-(200 I b) 4 k=1.9753 \mathrm{~V}
\end{aligned}
$$

Ao = $\mathbf{1 . 9 7 5 3}$

Rin: Set $\mathrm{Vo}=0 \mathrm{~V}$, measure the resistance at the input.

From the previous analysis, $\mathrm{Vx}=0.9951 \mathrm{~V}$,

$$
\begin{aligned}
& I_{i n}=\left(\frac{1 V-0.9951 \mathrm{~V}}{2 k}\right)+\left(\frac{1 V}{1 k}\right)=1.0017 \mathrm{~mA} \\
& R_{\text {in }}=\frac{V_{i n}}{I_{\text {in }}}=\frac{1 V}{1.0017 \mathrm{~mA}}=998 \Omega
\end{aligned}
$$

Rout: Set Vin $=0 \mathrm{~V}$, measure the resistance at Vout.
This isn't obvious, so add a 1 V source at the output and compute the resulting current

Solve for Vx :

$$
\left(\frac{V_{x}-0}{2 k}\right)+\left(\frac{V_{x}}{3 k}\right)-200\left(\frac{0-V_{x}}{2 k}\right)=0
$$

$$
\begin{aligned}
& \mathrm{Vx}=0 \\
& I_{\text {out }}=0+\left(\frac{1 V}{4 k}\right)=250 u A
\end{aligned}
$$

so

$$
R_{\text {out }}=\frac{V_{\text {out }}}{I_{\text {out }}}=\frac{1 \mathrm{~V}}{250 \mathrm{uA}}=4 \mathrm{k} \Omega
$$

The resulting 2-port model is then:

