Common Base, Common Collector Amplifiers.

Common Base Amplifier:

- Connect the base to ground
- Connect the input to Ve
- Connect the output to Vc:

Now find the 2-port model. To do this, let's first redraw the circuit:

Now let's find the 2-port parameters:
Rin: Set $\mathrm{Vo}=0 \mathrm{~V}$ and measure the input resistance. In this case, it's not that obvious what the answer is. So, let's apply 1V to Vin and see how much current is draws, 1/Iin is the input resistance.

$$
I_{i n}=\frac{1 V}{R_{e}}+\frac{1 V}{r_{f}}+\beta I_{b}
$$

$$
I_{i n}=\frac{1 V}{R_{e}}+\frac{1 V}{r_{f}}+\frac{\beta}{r_{f}}
$$

so

$$
R_{\text {in }}=\left(\frac{1}{R_{e}}+\frac{1}{r_{f}}+\frac{\beta}{r_{f}}\right)^{-1}
$$

Note that this is also

$$
\begin{aligned}
& R_{\text {in }}=R_{e}\left\|r_{f}\right\| \frac{r_{f}}{\beta} \\
& R_{\text {in }}=8 \Omega
\end{aligned}
$$

Ain: Set $\mathrm{Vo}=1 \mathrm{~V}$ and measure the voltage at the input. Again, this isn't obvious, but 0 V works. If Vin $=$ $0 \mathrm{~V}, \mathrm{Ib}=0, \beta I_{b}=0$. So $\operatorname{Ain}=0$.

$$
\operatorname{Ain}=0 \text {. }
$$

Rout: Set Vin $=0 \mathrm{~V}$ and measure the resistance at the output. If $\mathrm{Vin}=0 \mathrm{~V}, \mathrm{Ib}=0, \beta I_{b}=0$ and everything is turned off. The only thing you see at the output is Rc.

$$
\text { Rout }=\text { Rc. }
$$

Ao: Set Vin $=1 \mathrm{~V}$ and measure the voltage at the output.

$$
\begin{aligned}
& I_{b}=\frac{1}{r_{f}} \\
& I_{c}=\beta I_{b} \\
& A_{o}=V_{o}=-\frac{\beta R_{c}}{r_{f}} \\
& A_{o}=-115
\end{aligned}
$$

So, the 2-port model is then

Note that the common-base amplifier has a low input impedance. It's used as the first stage in an amplifier where the sensor needs a low-impedance load, such as a phonograph (the current carries the signal.)

Common Collector Amplifier:

- Short the collector to ground
- Connect the input to the base
- Connect the output to the collector

To find the 2-port parameters, redraw the circuit:

Now, find the 2-port parameters:
Rin: Set $\mathrm{Vo}=0 \mathrm{~V}$ and measure the resisance at the input.

$$
\begin{aligned}
& R_{i n}=R_{1}\left\|R_{2}\right\| r_{f} \\
& R_{i n}=928 \Omega
\end{aligned}
$$

Ain: Set $\mathrm{Vo}=1 \mathrm{~V}$ and measure the voltage at the input. By voltage division

$$
\begin{aligned}
& A_{\text {in }}=\left(\frac{R_{1} \| R_{2}}{R_{1} \| R_{2}+r_{f}}\right) \\
& A_{\text {in }}=0.5357
\end{aligned}
$$

Rout: Set Vin $=0 \mathrm{~V}$ and measure the resistance across Vo. Again, this isn't obvious, so let's apply a 1 V source to Vo and measure the current drawn:

$$
\begin{aligned}
& I=\frac{1}{r_{f}}+\frac{1}{R_{e}}-\beta\left(-I_{b}\right) \\
& I=\frac{1}{r_{f}}+\frac{1}{R_{e}}+\frac{\beta}{r_{f}}
\end{aligned}
$$

so

$$
R_{\text {out }}=\left(\frac{1}{r_{f}}+\frac{1}{R_{e}}+\frac{\beta}{r_{f}}\right)^{-1}
$$

which is also

$$
\begin{aligned}
& R_{\text {out }}=r_{f}\left\|R_{e}\right\| \frac{r_{f}}{\beta} \\
& R_{\text {out }}=7.9 \Omega
\end{aligned}
$$

Ao: Set Vin $=1 \mathrm{~V}$ and measure the voltage across the output. Using voltage node analysis:

$$
\begin{aligned}
& \left(\frac{V_{o}-1}{r_{f}}\right)+\left(\frac{V_{o}}{R_{c}}\right)-\beta I_{b}=0 \\
& \left(\frac{V_{o}-1}{r_{f}}\right)+\left(\frac{V_{o}}{R_{c}}\right)-\beta\left(\frac{1-V_{o}}{r_{f}}\right)=0 \\
& \left(\frac{1}{r_{f}}+\frac{1}{R_{c}}+\frac{\beta}{r_{f}}\right) V_{o}=-\left(\frac{\beta}{r_{f}}\right) \\
& V_{o}=-\left(\frac{\beta}{r_{f}}\right)\left(\frac{1}{r_{f}}+\frac{1}{R_{c}}+\frac{\beta}{r_{f}}\right)^{-1}
\end{aligned}
$$

or

$$
\begin{aligned}
& A_{o}=\left(\frac{R_{c}\left\|r_{r}\right\| \|_{f}^{r_{\beta}}}{r_{f}}\right) \beta \\
& A_{o}=0.9865
\end{aligned}
$$

So the 2-port model is:

It isn't really obvious what this is useful for. Typically, CC amplifiers are preceeded by a CE amplifier:

Now the 2-port model becomes:
Rin $=928$ Ohms by inspection
$\mathrm{Ai}=0$ by inspection

Rout: Set $\mathrm{Vi}=0 \mathrm{~V}$ and measure the resistance at the output. Apply a 1V source to Vout and see how much current you draw

$$
\begin{aligned}
& V_{2}=\left(\frac{1000}{1000+928}\right)(0.5257 \mathrm{~V})=0.2727 \mathrm{~V} \\
& I=\left(\frac{1 V-0.2727 \mathrm{~V}}{7.9 \Omega}\right)=92.1 \mathrm{~mA} \\
& R_{\text {out }}=\frac{1 \mathrm{~V}}{92.1 \mathrm{~mA}}=10.8 \Omega
\end{aligned}
$$

Aout: Set $\mathrm{Vi}=1 \mathrm{~V}$ and measure the voltage at the output. Using voltage nodes, at V 2 :

Solve for the voltage at V 2 . Using voltage nodes:

$$
\begin{aligned}
& \left(\frac{V_{2}-0}{1000}\right)+\left(\frac{V_{2}-0.5257 V_{o}}{928}\right)=0 \\
& V_{o}=0.9865 V_{2} \\
& \left(\frac{V_{2}-(-115)}{1000}\right)+\left(\frac{V_{2}-0.5257 \cdot 0.9865 \cdot V_{2}}{928}\right)=0 \\
& \left(\left(\frac{1}{1000}\right)+\left(\frac{1-0.5257 \cdot 0.9865}{928}\right)\right) V_{2}=-\left(\frac{115}{1000}\right) \\
& V_{2}=-75.72 V \\
& V_{o}=0.9865 V_{2} \\
& V_{o}=-74.69
\end{aligned}
$$

So the 2-port model of a CE:CC amplifier is

Common collector amplifiers are used as the last stage for an amplifier when you need to drive a low-impedance load, such as an 8 -Ohm speaker.

