Amplifiers and Mixers ECE 321: Electronics II

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Amplifiers and Mixers

With op-amps, you can build a wide variety of amplifiers and mixers. This covers some of the common ones we'll use.

Noninverting Amplifier

Writing the three voltage node equations

$$
\begin{aligned}
& V_{p}=X \\
& V_{m}=V_{p} \\
& \left(\frac{V_{m}-Y}{R_{1}}\right)+\left(\frac{V_{m}}{R_{2}}\right)=0
\end{aligned}
$$

Solving

$$
Y=\left(1+\frac{R_{1}}{R_{2}}\right) X
$$

Example: Design a circuit to implement

$$
\begin{aligned}
& y=1.5 x \\
& \text { gain }=1+\left(\frac{R_{1}}{R_{2}}\right)=1.5
\end{aligned}
$$

Let $\mathrm{R} 1=500, \mathrm{R} 2=1 \mathrm{k}$

Running a simulation for 3 ms (3 cycles) gives the following result.

Note the following:

- The output is 1.5 x the input ($\mathrm{Y}=1.5 \mathrm{X}$)
- They are in phase (the gain is positive)
- A sine wave is used to show that the gain of 1.5 works from -1 V to +1 V

Non-Inverting Summing Amplifier:

Design a circuit to mix Katy Perry, Iron Butterfly, and Enya

$$
Y=3 A+4 B+5 C
$$

Rewrite this as

$$
Y=\left(\frac{3 A+4 B+5 C}{12}\right) \cdot 12
$$

Checking in CircuitLab: Use three inputs

- 1V @ 1kHz
- 1V @ 10kHz (10x different so you can see the difference at Y)
- 0 V (getting too many signals to see what's going on)

Running a time-domain simulation for 3 ms (3 cycles)

Here, you can see

- The 1 kHz sine wave (envelope), mixed with
- A 10 kHz sine wave.

Inverting Amplifier

3 nodes: Need 3 equations for 3 unknowns

$$
V_{p}=0
$$

$$
V_{m}=V_{p}=0
$$

$$
\left(\frac{V_{m}-V_{i n}}{R_{2}}\right)+\left(\frac{V_{m}-V_{o}}{R_{1}}\right)=0
$$

Solving:

$$
V_{o}=\left(-\frac{R_{1}}{R_{2}}\right) V_{i n}
$$

Example: Deign a circuit with a gain of

$$
y=-1.5 x
$$

Solution: Let R1 = 1500 and R2 $=1000$ Ohms.

Simulation Results:

Note the following:

- The amplitude of Y is $1.5 x$ the amplitude of X (as desired)
- Y is 180 degrees out of phase from X (the gain is -1.5)

Summing Inverting Amplifier:

A slight variation is the summing amplifier

$$
\begin{aligned}
& V_{p}=0 \\
& V_{m}=V_{p}=0 \\
& \left(\frac{V_{m}-V_{a}}{R_{a}}\right)+\left(\frac{V_{m}-V_{b}}{R_{b}}\right)+\left(\frac{V_{m}-V_{o}}{R_{1}}\right)=0
\end{aligned}
$$

Solving:

$$
V_{o}=\left(-\frac{R_{1}}{R_{a}}\right) V_{a}+\left(-\frac{R_{1}}{R_{b}}\right) V_{b}
$$

Instrumentation Amplifier:

3 Nodes: Need 3 equations for 3 unknowns

$$
\begin{aligned}
& V_{p}=V_{m} \\
& \left(\frac{V_{p}-A}{R_{2}}\right)+\left(\frac{V_{p}}{R_{1}}\right)=0 \\
& \left(\frac{V_{m}-B}{R_{2}}\right)+\left(\frac{V_{m}-Y}{R_{2}}\right)=0
\end{aligned}
$$

Solving gives

$$
Y=\left(\frac{R_{1}}{R_{2}}\right)(A-B)
$$

Example: Implement

$$
Y=10 X-4
$$

Rewrite as

$$
\begin{aligned}
& Y=10(X-0.4) \\
& Y=\left(\frac{R_{1}}{R_{2}}\right)(A-B)
\end{aligned}
$$

With this circuit, you can implement almost any function.

