Temperature Sensors ECE 321: Electronics II
 Lecture \#4

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Sensors

Sensors convert something you want to measure into something you can measure.

Typically the output is a resistance

- Thermistor: Resistance changes with temperature:
- CdS Cell: Resistance changes with light level
- Gas Sensors: Resistance changes with gas levels

If you can measure resistance, you can measure about anything

- Replace the resistor with a sensor

Digikey: ECE Toy Store

Temperature Sensors

- Temperature is hard to measure
- Resistance is easy to measure

Temperature Sensors are devices whose resistance varies with temperature

- Resistive Temperature Device (RTD)
- Thermistor

Other temperature sensors exist: we'll just look at these two.

RTD: "Resistance Temperature Device"

Description: In metals, at 0K the resistance is low due to electrons traveling unhindered in the conduction bands. As temperature increases, the atoms vibrate and impede the electron flow. Hence, resistance increases as temperature increases.

Symbol:

Model: A polynomial model is often used:

$$
R=R_{0}\left(1+a_{1} T+a_{2} T^{2}+a_{3} T^{3}+\ldots\right)
$$

A 1st-Order Model is used for simplicity (with less accuracy)

$$
R=R_{0}(1+a T)
$$

Be	$\mathrm{a}=2.5 \% / \mathrm{C}$	most sensitive
Ni	$\mathrm{a}=0.681 \% / \mathrm{C}$	
Fe	$\mathrm{a}=0.651 \% / \mathrm{C}$	
Cu	$\mathrm{a}=0.43 \% / \mathrm{C}$	
Al	$\mathrm{a}=0.429 \% / \mathrm{C}$	
Pt	$\mathrm{a}=0.385 \% / \mathrm{C}$	
Nd	$\mathrm{a}=0.16 \% / \mathrm{C}$	least sensitive

Example: Find the resistance of a Copper RTD at 25C

- $\mathrm{R}(5 \mathrm{C})=10 \mathrm{k}$.

Solution: Using the model

$$
R=R_{0}(1+a \cdot T)
$$

Since Ro is defined at 5 C , at $25 \mathrm{C} T=+20$.

$$
R=10,000 \cdot(1+0.0043 \cdot 20 C)=10,860 \Omega
$$

Example 2: Design a circuit to output

- -10 V at -20 C
- +10 V at +20 C

Assume a copper RTD with (T in Celsius)
$R=1000(1+0.0043 T) \Omega$

Analysis:
At -20C,

- $\mathrm{R}=914$ Ohms
- $\mathrm{X}=4.775 \mathrm{~V}$
- $\mathrm{Y}=-10 \mathrm{~V}$

At +20 C

- $\mathrm{R}=1086$ Ohms
- $\mathrm{X}=5.206 \mathrm{~V}$
- $\mathrm{Y}=+10 \mathrm{~V}$

gain $=\left(\frac{10 V-(-10 V)}{5.206 V-4.775 V}\right)=46.42$
offset $=\left(\frac{5.206 \mathrm{~V}+4.775 \mathrm{~V}}{2}\right)=4.991 \mathrm{~V}$

Checking in Matlab:

```
\(\mathrm{T}=[-20: 0.1: 20]\);
\(\mathrm{R}=1000 *(1+0.0043 * \mathrm{~T})\);
\(\mathrm{X}=\mathrm{R} . /(1000+\mathrm{R}) * 10\);
\(\mathrm{Y}=46.42 \times(\mathrm{X}-4.991)\);
plot(T,Y);
xlabel('Temperature (C)');
ylabel('Y (Volts)');
```


Thermistors

Thermistors are semiconductors (as opposed to metals).
There are two types:

- NTC: Resistance drops with temperature (temperature sensor)
- PTC: Resistance increases with temperature (resettable fuse)

Symbol:

Thermister Model:

2-Parameter Model:

$$
R=\exp \left(A+\frac{B}{T}\right) \quad \pm 0.3 \mathrm{C} \text { over } 50 \mathrm{C}
$$

3-parameter Model:

$$
R=\exp \left(A+\frac{B}{T}+\frac{C}{T^{3}}\right) \quad \pm 0.01 \mathrm{C} \text { over } 100 \mathrm{C}
$$

4-Parameter Model:

$$
R=\exp \left(A+\frac{B}{T}+\frac{C}{T^{2}}+\frac{D}{T^{3}}\right) \quad \pm 0.00015 \mathrm{C} \text { over } 100 \mathrm{C}
$$

Example: Design a circuit to output

- -10 V at -20 C
- +10 V at +20 C

Assume a thermistor with (T in Kelvin)

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

Analysis:
At -20C (253K)

- $\mathrm{R}=10,285 \mathrm{Ohms}$
- $\mathrm{X}=7.742 \mathrm{~V}$
- $\mathrm{Y}=-10 \mathrm{~V}$

At +20 C

- $\mathrm{R}=1,251 \mathrm{Ohms}$
- $\mathrm{X}=2.942 \mathrm{~V}$

- $\mathrm{Y}=+10 \mathrm{~V}$

$$
\begin{aligned}
& \text { gain }=\left(\frac{10 V-(-10 V)}{2.942 V-7.742 V}\right)=-4.167 \\
& \text { offset }=\left(\frac{7.742 V+2.942 V}{2}\right)=5.342 V
\end{aligned}
$$

Checking in Matlab:

```
T = [-20:0.4:20]';
R = 1000 * exp( 3905 ./ (T + 273) - 3905/298);
X = R ./ (3000 + R) * 10;
Y = 4.167 * ( 5.342 - X );
plot(T,Y);
xlabel('Temperature (C)');
ylabel('Y (Volts)');
```


Handout

Design a circuit which outputs

- 0 V at $0 \mathrm{C}(\mathrm{R}=3320)$
- 10 V at $40 \mathrm{C}(\mathrm{R}=533)$

Linearizing Circuits:

Since R is strongly nonlinear, a circuit which linearizes the resistance vs. temperature relationship would be nice. One such circuit is

Example: Assume

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

Find Ra and Rb so that

$$
Z_{10 C}=\left(\frac{Z_{20 C}+Z_{0 C}}{2}\right)
$$

Solution: fminsearch()

```
    [Ra, e] = fminsearch('Thermistor',1000)
    Ra=504.4401
    e = 1.2991e-015
```

- $\mathrm{Rb}=1000$
- $\mathrm{Ra}=\mathrm{Ra}=504.44$

```
function [ J ] = Thermistor( Z )
    Ra = Z;
    Rb = 1000;
    R0 = 1000*exp(3905/273-3905/298);
    R10 = 1000*exp (3905/283-3905/298);
    R20 = 1000*exp(3905/293-3905/298);
% Z = R1 R2 / (R1 + R2)
    Z0 = (R0 + Rb)* (Ra) / (R0 + Ra + Rb);
    Z10 = (R10 + Rb)* (Ra) / (R10 + Ra + Rb);
    Z20 = (R20 + Rb)* (Ra) / (R20 + Ra + Rb);
    E = Z10 - (Z0 + Z20)/2;
    J = E*E;
    end
```


Resulting R vs. Temperature

```
T = [0:0.01:20]';
K = T + 273;
R = 1000*exp(3905 ./ K - 3905/298);
Z = Ra * (R + Rb) ./ (R + Ra + Rb);
plot(T,Z)
```


Uses of Linearizing Circuit

- More linear Y vs. Temperature

Resolution (Voltage Output)

- Smallest change in temperature you can detect
- Assume 10-bit A/D (0..1023) for $0 . .10 \mathrm{~V}$

Voltage Out

- 0 C to +30 C produces 0 V .. 10 V out
- 10-bit A/D (0 .. 1023)
- $d V=\left(\frac{10 \mathrm{~V}}{1023}\right)=9.775 \mathrm{mV} \quad$ resolution in voltage
- ${ }^{0} C=\left(\frac{30^{\circ} C}{10 V}\right) \cdot 9.887 m V$
- $d T=0.02933{ }^{0} C \quad$ resolution in degrees C

Uses of Linearizing Circuit

- 555 Timer
- $\mathrm{t}($ on $)=(100+\mathrm{Z}) * \mathrm{C}^{*} \ln (2)$
- $\mathrm{t}(\mathrm{off})=\mathrm{Z} * \mathrm{C}^{*} \ln (2)$

Period is proportional to Z

- $\mathrm{Z}=$ linearizing network
- period $=(100+2 \mathrm{Z}) * \mathrm{C}^{*} \ln (2)$

Resultion (frequency output)

- Assume $\mathrm{Z}=430(+11 \mathrm{C}), \mathrm{C}=10 \mathrm{uF}$

$$
\begin{array}{lc}
t_{\text {on }+ \text { off }}=(100+Z) \cdot C \cdot \ln (2)+Z \cdot C \cdot \ln (2) \\
t_{\text {on }+ \text { off }}=2.70 \mathrm{~ms} & 375 \mathrm{~Hz} \\
d t=100 \mathrm{~ns} & 10 \mathrm{MHz} \text { clock } \\
t+d t \Rightarrow Z=430.0180 \Omega & \\
d Z=0.0180 \Omega &
\end{array}
$$

you can measure resistance to 0.0180 Ohms

$$
\begin{aligned}
& d T=\left(\frac{20 C}{40 \Omega}\right) \cdot 0.0180 \Omega \\
& d T=0.009{ }^{0} \mathrm{C}
\end{aligned}
$$

you can measure temperature to 0.009 degrees C

Summary

RTDs and Thermistors are useful sensors for measuring temperature

- RTD $R=R_{0} \cdot(1+\alpha T) \Omega$
- Thermistor $R=R_{25} \cdot \exp \left(\frac{B}{T+273}-\frac{B}{298}\right) \Omega$

With a linearizing circuit, you can make the resistance of a thermistor roughly linear over a small temperature range

With an instrumentation amplifier, you can output a voltage that's proportional to temperature over a small temperature range

