Poles, Zeros, and Frequency Response

 ECE 321: Electronics II

 ECE 321: Electronics II
 Lecture \#8

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Poles, Zeros, and Frequency Response

With the previous circuits, you can build filters with

- Real poles
- Complex Poles, and
- Zeros at $\mathrm{s}=0$

Filter design uses this to places poles and zeros to give a desired frequency response. In this lecture we look at how the poles and zeros affect the gain vs. frequency for a filter.

Filter Analysis: Single Input

Example: Find $\mathrm{y}(\mathrm{t})$

$$
\begin{aligned}
& Y=\left(\frac{100}{s^{2}+5 s+30}\right) X \\
& x(t)=4 \cos (6 t)+5 \sin (6 t)
\end{aligned}
$$

Solution

$$
\begin{aligned}
& s=j 6 \\
& X=4-j 5 \\
& Y=\left(\frac{100}{s^{2}+5 s+30}\right)_{s=j 6} \cdot(4-j 5) \\
& Y=-18.590-j 9.615 \\
& y(t)=-18.590 \cos (6 t)+9.615 \sin (6 t)
\end{aligned}
$$

Filter Analysis: Bode Plot

Given a filter, find the gain vs. frequency.
Easy: Just plug into Matlab

$$
\begin{aligned}
& Y=\left(\frac{2 s}{s^{2}+2 s+10}\right) X \\
& \mathrm{w}=[0: 0.01: 10] ' ; \\
& \mathrm{s}=\mathrm{*}^{\star} \mathrm{w} ; \\
& \mathrm{G}=2 \star^{*} \mathrm{~s} . /\left(\mathrm{s} .^{\wedge} 2+2 \star \mathrm{~s}+10\right) ; \\
& \mathrm{plot}(\mathrm{w}, \mathrm{abs}(\mathrm{G}))^{2} \\
& \text { xlabel('Frequency (rad/sec)'); } \\
& \text { ylabel('Gain'); }
\end{aligned}
$$

Filter Design

Pick poles and zeros to match a desired frequency response

- harder

This lecture

- How do real poles affect the gain vs. frequency
- How to complex poles affect the gain vs. frequency
- How to zeros affect the gain vs. frequency
- Using fminsearch() to design a filter

Real Poles vs. Frequency Response

$$
Y=\left(\frac{1}{s+a}\right) X=\left(\frac{1}{j \omega+a}\right) X
$$

Graphical:

- A maximum when you're closest to the pole (i.e. at $\mathrm{w}=0$).
- Zero when you're far away from the pole (at infinity), and
- Down by $\sqrt{2}$ when the frequency is ja

Complex Poles vs. Frequecy Respons

$$
Y=\left(\frac{1}{s+1-j i 0}\right) X
$$

- Maximum at $\mathrm{s}=\mathrm{j} 10$
- Down by $\sqrt{2}$ when $1 \mathrm{rad} / \mathrm{sec}$ away from 10 (j 9 and j 11)

Example: Determine G(s)

Zero at $\mathrm{s}=0$

Pole at

- $\mathrm{s}=\mathrm{j} 10$
- BW = 4 (real = 2)
- $\mathrm{s}=-2+/-\mathrm{j} 10$

Pole at

- $s=j 30$
- $\mathrm{BW}=2($ real $=1)$
- $\mathrm{s}=-1+/-\mathrm{j} 30$
$G(s) \approx\left(\frac{k s}{(s+2 \pm j 10)(s+1 \pm j 30)}\right)$

Gain

Generalized Filter

$$
Y=k\left(\frac{\left(s+z_{1}\right)\left(s+z_{2}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right)}\right) X
$$

The graphical interpriation for this filter is

$$
\text { gain }=k \cdot \frac{\Pi(\text { distance from } \mathrm{jw} \text { to the zeros })}{\Pi(\text { distance from } \mathrm{jw} \text { to the poles })}
$$

Note that

- If you're close to a zero, the gain is small (multiply by a small number)
- If you're close to a pole, the gain is large (divide by a small number)

So, a design strategy could be

- Place zeros near frequencies you want to reject
- Place poles near frequencies you want to pass.

Filter Design using fminsearch

Problem: Design a filter to approximate an ideal low-pass filter with a gain of

$$
G_{\text {ideal }}(s) \approx\left\{\begin{array}{cc}
1 & \omega<4 \\
0 & \text { otherwise }
\end{array}\right.
$$

Guess filter parameters

- poles, zeros, gain

Compute G(jw)
Compute the difference

$$
E(j \omega)=\left|G_{\text {ideal }}(j \omega)\right|-|G(j \omega)|
$$

Compute the cost

$$
J=\int_{0}^{10} E^{2}(j \omega) \cdot d \omega
$$

Use fminsearch to reduve the cost as much as possible

Real Poles:

$$
\begin{aligned}
& G(s)=\left(\frac{a}{(s+b)(s+c)(s+d)(s+e)}\right) \\
& \text { function [J] = costf(} \mathrm{z} \text {) } \\
& a=z(1) ; \\
& \mathrm{b}=\mathrm{z}(2) \text {; } \\
& c=z(3) ; \\
& d=z(4) ; \\
& \text { e }=z(5) \text {; } \\
& \mathrm{w}=\text { [0:0.01:10]'; } \\
& \text { S = j*w; } \\
& \text { Gideal = } 1 \text {.* (w < 4); } \\
& G=a . /((s+b) . *(s+c) . *(s+d) . *(s+e)) ; \\
& \mathrm{E}=\mathrm{abs}(\text { Gideal) }-\mathrm{abs}(\mathrm{G}) \text {; } \\
& J=\operatorname{sum}(E . \wedge 2) ; \\
& \text { end }
\end{aligned}
$$

Solution: Not great with just real poles

$$
\begin{aligned}
& [\mathrm{a}, \mathrm{~b}]=\text { fminsearch('costf', }[100,2,3,4,5]) \\
& \mathrm{a}=697.8575 \\
& \mathrm{~b}=55.3564
\end{aligned}
$$

Pole Location vs. Gain: $G(s)=\left(\frac{697}{(s+4.91)^{4}}\right)$

Complex Poles: $\quad G(s)=\left(\frac{a}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right)$

```
function [ J ] = costf( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    w = [0:0.01:10]';
    S = j*W;
    Gideal = 1 .* (w < 4);
    G =a./ ( (s.^2 + b*s + c) .* (s.^2 + d*s + e) );
    E = abs(Gideal) - abs(G);
    J = sum(E.^ 2);
end
```

Minimizing the cost:

$$
\begin{aligned}
& \gg[a, b]=\text { fminsearch('costf', } 10 * \operatorname{rand}(1,5)) \\
& \mathrm{a}=\begin{array}{lllll}
36.6716 & 0.8314 & 12.3599 & 2.1860 & 3.1799 \\
\mathrm{~b}= & 13.0720 & & &
\end{array}
\end{aligned}
$$

meaning

$$
G(s)=\left(\frac{36.67}{\left(s^{2}+0.8314 s+12.3599\right)\left(s^{2}+2.1860 s+3.1799\right)}\right)
$$

The gain vs. frequency and pole location looks like:

5 Poles: $\quad G(s)=\left(\frac{a \cdot c e}{(s+a)\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right)$

```
function \([J]=\operatorname{costf}(z)\)
    \(a=z(1) ;\)
    \(\mathrm{b}=\mathrm{z}(2)\);
    \(\mathrm{c}=\mathrm{z}(3)\);
    d = z (4);
    e = z(5);
    \(\mathrm{w}=\) [0:0.01:10]';
    \(\mathrm{S}=j^{*} \mathrm{w}\);
    Gideal \(=1\).* \((\mathrm{w}<4)\);
    \(G=a^{*} c^{*} e . /\left((s+a) . *\left(s . \wedge 2+b^{*} s+c\right) . *\left(s \cdot{ }^{\wedge} 2+d^{*} s+e\right)\right)\);
    \(G=\operatorname{abs}(G) ;\)
    \(\mathrm{E}=\mathrm{abs}(\mathrm{Gideal}) \quad-\mathrm{abs}(\mathrm{G})\);
    \(J=\operatorname{sum}(E . \wedge 2) ;\)
end
```


Running in Matlab:

meaning

$$
G(s)=\left(\frac{96.4}{(s+1.222)\left(s^{2}+0.6761 s+13.5\right)\left(s^{2}+1.88 s+5.73\right)}\right)
$$

Note that there is definately a pattern here:

- You scatter N poles in the pass-band
- Place the poles on an ellipse spanning the pass-band

Summary

Filter analysis is simple

- Plug in $s=j w$

Filter design is a little harder

- Place zeros by frequencies you want to reject
- Place poles by frequencies you want to pass
- Complex part of pole tells you the resonance frequency
- Rel part of the pole tells you the bandwidth
- fminsearch() can be used to design filters

