Transistor Amplifiers: DC Analysis ECE 321: Electronics II Lecture #12: Jake Glower

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Background:

Transistor + Resistor gives a load-line

lc

lb

For +/- operation (AC) bias in the active region

Small change in Ib creates large change in Vce

Transistor Amplifiers

Resistors

- Rc converts Ic to a voltage
- R1 and R2 bias in the active region
- Re stabilzes the Q-point

Capacitors

• Isolate the circuit at DC

I/O

- Input
- Output
- Ground the third line

Procedure

DC Analysis (this lecture)

• Find R1, R2, and Re to set the DC operating point

AC Analysis (coming soon)

- Apply a small signal to one C
- Model the AC behaviour
 - Common Emitter (emitter gounded)
 - Common Base (base grounded)
 - Common Collector (collector grounded)

DC Analysis: (Re = 0)

Replace R1 and R2 with their Thevenin equivalent

Redraw the circuit: Assume Re = 0

$$I_b = \left(\frac{5.333 - 0.7}{222k}\right) = 20.85 \mu A$$
$$I_c = 200I_b = 4.170 m A$$
$$V_{ce} = 12 - 1000I_c = 7.83V$$

DC Analysis: Re > 0

Redraw the circuit

$$V_{bb} = R_{bb}I_b + 0.7 + R_e(I_b + \beta I_b)$$
$$I_b = \left(\frac{V_{bb} - 0.7}{R_{bb} + (1 + \beta)R_e}\right)$$

)

 $I_c = \beta I_b$

$$V_{ce} = 12 - R_c I_c - R_e (I_b + I_c)$$

DC Design

Find Rth and Vth to set the Q-point to 6.00V

$$I_c = \left(\frac{12V-6V}{1k}\right) = 6mA$$
$$I_b = \left(\frac{I_c}{200}\right) = 30\mu A$$

Let Vb = +12V

$$V_b = 12V$$

$$R_b = 377k\Omega$$

Converting back to R1 and R2:

$$V_b = \left(\frac{R_2}{R_1 + R_2}\right) 12V = 12V$$

 $R_2 = \infty$

$$R_b = R_1 ||R_2 = 377k\Omega$$
$$R_1 = 377k\Omega$$

CircuitLab Simulation

- Vce = 7.385V (vs. 6.00V)
- $\beta = \text{Ic} / \text{Ib} = 153.8 \text{ (vs. 200)}$

Variations in β :

 $\boldsymbol{h}_{\mbox{\tiny fe}}$ ($\boldsymbol{\beta}$) varies with each transistor

- 2n222: $100 < h_{fe} < 300$
- LM3904: $100 < h_{fe} < 300$
- TIP112: $300 < h_{fe}$

 \boldsymbol{h}_{fe} ($\boldsymbol{\beta}$) varies with the operating point

- 115 @ Ic = 0.1mA
- 155 @ Ic = 10mA
- 60 @ Ic = 100mA

ON CHARACTERISTICS

	DC Current Gain*				
h _{FE}	DC Current Gain*				
	(I _c =0.1mAdc, V _{ce} =1.0Vdc)	40			
	(I _c =1.0mAdc, V _{ce} =1.0Vdc)	70			
	(I _c =10mAdc, V _{cE} =1.0Vdc)	100	300		
	(Ic=50mAdc, VcE=1.0Vdc)	60			
	(I _c =100mAdc, V _{cE} =1.0Vdc)	30			
V _{CE(sat)}	Collector-Emitter Saturation Voltage				
	(I _c =10mAdc, I _B =1.0mAdc)		0.2	Vdc	
	(I _c =50mAdc, I _B =5.0mAdc)		0.4		
V _{BE(sat)}	Base-Emitter Saturation Voltage				
	(I _c =10mAdc, I _B =1.0mAdc)	0.65	0.85	Vdc	
	(I _c =50mAdc, I _B =5.0mAdc)		0.95		

DC Current Gain vs Collector Current

This affects the Q-point

• Monte Carlo simulation

```
V = [];
I = [];
for i=1:100
    Rb = 377000 * (1 + (rand()*2-1)*0.01);
    Rc = 1000 * (1 + (rand()*2-1)*0.01);
    Beta = 200 + 100*(rand()*2-1);
    Ib = (12-0.7)/Rb;
    Ic = Beta*Ib;
    Vc = 12-Ic*Rc;
    V = [V; Vc];
    I = [I; Ic];
    end
plot(V, I, '.');
```


To compensate for variations in β , add Re.

$$I_c = \beta I_b$$

-V_b + R_b I_b + 0.7 + R_e (I_b + I_c) = 0
$$I_b = \left(\frac{V_b - 0.7}{R_b + (1+\beta)R_e}\right)$$

To stabilze the voltage at Vc:

$$V_c = V_{cc} - R_c I_c$$
$$V_c = V_{cc} - \left(\frac{\beta R_c}{R_b + (1+\beta)R_e}\right) (V_b - 0.7)$$

If

$$(1 + \beta)R_e \gg R_b$$
$$V_c \approx V_{cc} - \left(\frac{\beta R_c}{(1 + \beta)R_e}\right)(V_b - 0.7)$$

To stabilize the Q point, pick Re such that $(1 + \beta)R_e >> R_b$

Design (take 2)

- Vce = 6V
- Stabilize Q-point for variations in $\boldsymbol{\beta}$

Pick Re > 0

 $R_e = 100\Omega$

To stabize the Q point

 $(1 + \beta)R_e \gg R_b$ $20, 100\Omega \gg R_b$ $R_b = 2k\Omega$

From before,

 $I_c = 6mA$ $I_b = 30\mu A$

SO

$$I_b = \left(\frac{V_b - 0.7}{R_b + (1 + \beta)R_e}\right) = 30\mu A$$
$$V_b = 1.363V$$

This corresponds to R1 and R2 being:

$$\left(\frac{R_1 R_2}{R_1 + R_2}\right) = 2000$$
$$\left(\frac{R_2}{R_1 + R_2}\right) 12V = 1.363V$$
$$R_1 = 17.6k\Omega$$

$$R_2 = 2256\Omega$$

Monte-Carlo Simulation

```
V = [];
I = [];
for i=1:100
   R1 = 17600 * (1 + (rand() * 2 - 1) * 0.01);
   R2 = 2256 * (1 + (rand() * 2 - 1) * 0.01);
   Rc = 1000 * (1 + (rand() * 2 - 1) * 0.01);
   Re = 100 * (1 + (rand() * 2 - 1) * 0.01);
   Beta = 200 + 100*(rand()*2-1);
   Vb = 12*(R2 / (R1+R2));
   Rb = 1/(1/R1 + 1/R2);
   Ib = (Vb-0.7) / (Rb + (1+Beta) *Re);
   Ic = Beta*Ib;
   Vc = 12 - Rc*Ic;
   V = [V ; Vc];
   I = [I ; Ic];
   end
plot(V,I*1000,'.');
```


CircuitLab Simulation

- Vce = 5.635V (vs. 6.00V)
- Ib = 38.39 uA (vs. 30.0uA)
- Ic = 5.783mA (vs. 6.00mA)
- $\beta = \frac{I_c}{I_b} = 150.6$ (vs. 200)
- Re helped stabilize the Q-point in spite of the differnce in β

- DC					
∨(∨b)	1.287 ∨	1	0		
V(Vc)	6.217 V	1	0		
V(Ve)	582.1 mV	1	0		
l(Q1.nB)	38.39 µA	1	0		
l(Q1.nC)	5.783 mA	1	0		
+ Add Expression					
I≣Export Result	s				
Run DC Solve	er				

Summary:

- In order to use a transistor as a Class-A amplifier, you need to bias it in the active region.
- Re serves to stabilize the Q-point for variations in $\boldsymbol{\beta}$
- R1 and R2 serve to set the Q-point
- The capacitors isolate the circuit at DC

The following lectures will look at AC analysis of this circuit

