2-Port Models
 ECE 321: Electronics II
 Lecture \#13: Jake Glower

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

2-Port Models

Generalized Thevenin Equivalent

Thevenin Equivalents

- The output of a circuit follows a load line
- Any circuit with the same load line behaves the same
- The Thevenin Equivalent is the simplest circuit to obtain the same load line

Thevenin Example:

- V_{th} : The voltage at the load with $\mathrm{R}_{\mathrm{t}}=$ infinity (7V)
- R_{u} : The resistance looking in with sources turned off: $3 \mathrm{k} \| 7 \mathrm{k}=2.1 \mathrm{k}$
- $I_{m \mathrm{~m}}$: The current I_{L} when $R L=0 . \quad \mathrm{I}_{\mathrm{mm}}=\mathrm{V}_{\mathrm{w}} / \mathrm{R}_{\mathrm{u}}: \quad \mathrm{I}_{\text {short }}=10 \mathrm{~V} / 3 \mathrm{~V}=3.33 \mathrm{~mA}$

Thevenin Equivalent for Previous Circuit along with its Load Line

2-Port Models

Thevenin equivalent for circuits with

- An input
- An output

2-Port Parameters:

To determine each of the four 2-port model parameters, four tests are run:

- Ai: \quad Set Vout $=1 \mathrm{~V}$ and measure Vin. $\mathrm{Ai}=\mathrm{Vin}$
- Ao: Set Vin $=1 \mathrm{~V}$ and measure Vout. Ao $=$ Vout
- Rin: Set Vout $=0 \mathrm{~V}$ and measure the resistance seen at the input
- Rout: Set Vin $=0 \mathrm{~V}$ and measure the resistance seen at the output

Example: Determine the 2-port model for the following circuit:

Ai: Set Vout $=1 \mathrm{~V}$, measure the voltage at Vin. $\mathrm{Ai}=\mathrm{Vin}$

- $\mathrm{Ai}=0.6$

Ao: Set Vin $=0 V$, measure the voltage at Vout. Ao $=$ Vout

- Ao = 0.75

Rin: Set Vout $=0 \mathrm{~V}$, measure the resistance at Vin.

- $R_{\text {in }}=1 k+3 k| | 2 k=2.2 k \Omega$

Rout: Set Vin $=0 \mathrm{~V}$, measure the resistance at Vout

- Rout $=2 k+1 k \| 3 k=2750 \Omega$

So, the 2-port model is:

Example 2: When R isn't obvious

- Apply a test voltage (1V typical)
- Compute the current draw
- $\mathrm{R}=1 \mathrm{~V} / \mathrm{I}$

Ai: Set Vout $=1 \mathrm{~V}$, measure Vin

Compute Vx using voltage nodes:

$$
\begin{aligned}
& \left(\frac{V_{x}}{1 k+2 k}\right)+\left(\frac{V_{x}}{3 k}\right)-200\left(\frac{0-V_{x}}{3 k}\right)=0 \\
& V_{x}=0 \quad \Rightarrow \quad \mathbf{A i}=\mathbf{0}
\end{aligned}
$$

Ao: \quad Set Vin $=1 \mathrm{~V}$, measure the voltage at Vo

Find Vx using voltage nodes:

$$
\begin{aligned}
& \left(\frac{V_{x}-1}{2 k}\right)+\left(\frac{V_{x}}{3 k}\right)-200\left(\frac{1-V_{x}}{2 k}\right)=0 \\
& V_{x}=0.9951 \mathrm{~V} \\
& I_{b}=\left(\frac{1-V_{x}}{2 k}\right)=2.469 \mu \mathrm{~A} \\
& V_{o}=-(200 I b) 4 k=1.9753 \mathrm{~V}
\end{aligned}
$$

Ao = $\mathbf{1 . 9 7 5 3}$

Rin: Set $\mathrm{Vo}=0 \mathrm{~V}$, measure the resistance at the input.

From the previous analysis, $\mathrm{Vx}=0.9951 \mathrm{~V}$,

$$
\begin{aligned}
& I_{\text {in }}=\left(\frac{1 V-0.9951 V}{2 k}\right)+\left(\frac{1 V}{1 k}\right)=1.0017 \mathrm{~mA} \\
& R_{\text {in }}=\frac{V_{\text {in }}}{I_{\text {in }}}=\frac{1 V}{1.0017 \mathrm{~mA}}=998 \Omega
\end{aligned}
$$

Rout: Set Vin $=0 \mathrm{~V}$, measure the resistance at Vout.
This isn't obvious, so add a 1 V source at the output and compute the resulting current

Solve for Vx:

$$
\begin{aligned}
& \left(\frac{V_{x}-0}{2 k}\right)+\left(\frac{V_{x}}{3 k}\right)-200\left(\frac{0-V_{x}}{2 k}\right)=0 \\
& \mathrm{VX}=0 \\
& I_{\text {out }}=0+\left(\frac{1 V}{4 k}\right)=250 u A
\end{aligned}
$$

SO

$$
R_{\text {out }}=\frac{V_{\text {out }}}{I_{\text {out }}}=\frac{1 V}{250 u \mathrm{~A}}=4 \mathrm{k} \Omega
$$

