Multi-Stage Amplifiers ECE 321: Electronics II

Lecture \#16 Jake Glower

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Recap:

CE, CB, CC Amplifiers

What do you get when you cancade amplifiers?

CE: CE

Replace with 2-Port Models

- Rin $=605$
- $\mathrm{Ai}=0$
- Rout $=1000$
- $A_{o}=(-230)\left(\frac{605}{1000+605}\right)(-230)=19,940$

CircuitLab Results:

- Vout $=1.34 \mathrm{~V}$
- $A_{o}=\frac{1.34 \mathrm{~V}}{0.1 m V}=13,400$

Change RL from 10 M to 1 k

- Vo drops to 689 mV
- $R_{\text {out }}=\left(\frac{1.34 V-689 m V}{689 m V}\right) 1000 \Omega$
- $R_{\text {out }}=944 \Omega$

Change RL $=0$ Ohms

- $\mathrm{I}(\mathrm{C} 1)=185.8 \mathrm{nA}$
- $R_{i n}=\left(\frac{0.1 m V}{185.8 n A}\right)=538 \Omega$

CE : CE Results

CE : CC

CE: CC

Step 1: Replace each stage with its 2-port model

- Rin $=605$
- $\mathrm{Ai}=0$

Ao:

- Apply 1V at the input
- Compute V2
- Voltage Node equations...

$$
\left(\frac{V_{1}-(-230)}{1000}\right)+\left(\frac{V_{1}-0.6976 V_{2}}{605}\right)=0
$$

$$
V_{2}=0.9568 V_{1}
$$

substituting for V2

$$
\begin{aligned}
& \left(\frac{V_{1}+230}{1000}\right)+\left(\frac{V_{1}-0.6976 \cdot 0.9568 V_{1}}{605}\right)=0 \\
& \left(\frac{1}{1000}+\frac{1-0.6976 \cdot 0.9568}{605}\right) V_{1}=-\left(\frac{230}{1000}\right)
\end{aligned}
$$

$$
V_{1}=-148.42
$$

$$
V_{2}=0.9568 V_{1}=-142.0
$$

$\mathrm{Ao}=-142.0$

Rout:

- Short Vin
- Apply 1V to Vout
- Compute the current
$V_{1}=\left(\frac{1000}{1000+605}\right) 0.6876 \mathrm{~V}$

$V_{1}=0.4346 \mathrm{~V}$
$0.9568 V_{1}=0.4159$
$I=\left(\frac{1 V-0.4159 V}{4.14 \Omega}\right)=141.1 m A$
$R_{\text {out }}=\frac{1 \mathrm{~V}}{141.1 \mathrm{~mA}}=7.087 \Omega$

Simulation Results

Ao $=130.3$

- $\mathrm{RL}=10 \mathrm{M}$
- $\mathrm{V} 0=1 \mathrm{mV}, 1 \mathrm{kHz}$
- Vout $=130.3 \mathrm{mV}$

Rin $=506$ Ohms

- $\mathrm{RL}=0$
- $\mathrm{V} 0=1 \mathrm{mV}, 1 \mathrm{kHz}$
- $\mathrm{I} 0=1.974 \mathrm{uA}$
- $\operatorname{Rin}=1 \mathrm{mV} / 1.974 \mathrm{uA}$

Rout $=7.84$ Ohms

- $\mathrm{RL}=8$
- $\mathrm{V} 0=1 \mathrm{mV}, 1 \mathrm{kHz}$
- Vout $=67.1 \mathrm{mV}$

CE : CC Results

Multi-Stage Amplifiers.

The shopping list of amplifiers you have to play with are as follows:

In general:

- CE amplifiers are good for increasing the gain.
- CB amplifiers are good for te first stage if you need a low input impedance.
- CC amplifiers are good for the last stage if you are driving a low-impedance load, such as an 8-Ohm speaker.

Problem: Design an amplifier

Input: Phonograph needle: $\mathrm{R}_{\mathrm{N}}=10$ Ohms

$$
I_{i n}=1 \mu A
$$

Output: 8 Ohm Speaker
Relationship:
Vout $>10 \mathrm{Vp}$

Design

Stage 1: CB

- Low input impedance (current source)

Stage N: CE: CC

- Low output impedance

CE inbetween

- Adds gain

Voltage Analysis

- $\operatorname{Iin}=1 u \mathrm{~A}($ peak $)$
- Vout $=1.727 \mathrm{~V}($ peak $)$

Add another CE amplifier

- Adds another gain of 86.7

$$
-230\left(\frac{605}{1000+605}\right)=86.7
$$

- Increases Vout to 149.7 V

Reduce the gain so that Vout $=10.00 \mathrm{~V}$

- Add a resistor in series in stage \#2a or Stage \#2b to reduce the gain
- Last stage wastes power (bad)
- First stage decreases the signal (hurts signal to noise ratio - also bad)

Options for Driving a Speaker

Make the last stage CE : CC

- Low output impedance

Have the last stage (CE) drive a push-pull amplifier

- Uses a transistor to amplify the current
- Input impedance is 4G Ohms (MCP602)

Add a transformer before the speaker

- Impedances go through a transformer as the turn-ratio squared

Summary

Mix and match CE, CB, CC amplifiers to create a multi-stage amplifier First stage is either CE or CB

- CE for high input impedance, CB for low impur impedance

Middle stages are CE

- Each CE increases the gain by 86

Last stage is either CE or CC

- CE if high output impedance is OK (driving a push-pull amplifier), CC if not

