ECE 331 - Homework \#5

Delta-Y Connetctions, Unbalanced Loads
Due Monday, February 24th, 4PM

1) A 3-phase transformer in Y configuration drives a 3-phase balanced load in Y configuration. Determine the currents Ia, Ib, Ic an the current on the neutral line, In. Assume the line-to-neutral voltage for all three transformers is 2.4 kV rms . $\left\{V_{a}, V_{b}, V_{c}\right\}=\left\{2.4 \mathrm{kV} \angle 0^{0}, 2.4 \mathrm{kV} \angle-120^{\circ}, 2.4 \mathrm{kV} \angle-240^{\circ}\right.$, $\}$

2) A 3-phase transformer in Delta configuration drives a 3-phase balanced load in Y configuration. Determine the currents Ia, Ib, Ic an the current on the neutral line, In. Assume the line-to-line voltage at the transformer is 2.4 kV .

3) A 3-phase transformer in Y configuration drives a 3-phase balanced load in Y configuration. Assume phase B transformer is removed. Determine the currents Ia, Ib, Ic an the current on the neutral line, In. Assume the line-to-neutral voltage of each transformer is 2.4 kV .

4) A 3-phase transformer in Delta configuration drives a 3-phase balanced load in Y configuration. Assume the phase BC transformer is removed. Determine the currents $\mathrm{Ia}, \mathrm{Ib}, \mathrm{Ic}$ an the current on the neutral line, In. Assume the line-to-line voltage of each transformer is 2.4 kV .

5) A 3-phase transformer in Delta configuration drives a 3-phase unbalanced load in Y configuration. Determine the currents $\mathrm{Ia}, \mathrm{Ib}, \mathrm{Ic}$ an the current on the neutral line, In . Assume the line-to-line voltage at the transformer is 2.4 kV .

