## ECE 331 - Homework #6

Per-unit analysis. Life Cycle Costing Due Monday, March 3, start of class

Per-Unit Analysis: Consider the following utility grid:



1) Convert this to a per-unit basis using

- Vo = line voltage
- Po = 100 kVA
- 2) Determine Is and VL on
  - · A per-unit basis, and
  - In terms of amps and volts.

## 3a) Convert the following circui to a per-unit basis using Vo = line voltage and Po = 100kVA.

3b) Solve for the voltage at the load and the source current in terms of

- In terms of per units, and
- In terms of amps and volts



## Time Value of Money

Two transformers have the following cost per year

| year | Initial Cost<br>(year 0) | Annual Operation Cost<br>(year 019) | Disposal Cost<br>(year 20) |
|------|--------------------------|-------------------------------------|----------------------------|
| A    | \$10,000                 | \$300<br>(1% of 50kVA load)         | \$0                        |
| В    | \$0                      | \$600<br>(2% of 50kVA load)         | \$15,000                   |

4) Assuming an interest rate of 2.61% (the current 10-year t-bill), which transformer has the lower present-value cost to the utility?

5) Assuming an interest rate of 11% (roughly used in the stock market), which transformer has the lower present-value cost to the utility?

Problem 6 & 7: Cost vs. Efficiency. Assume you are deciding between two transformers: A and a second one with lower initial cost but higher copper and core losses. Assume both have a disposal cost of \$0.

| year | Initial Cost<br>(year 0) | Annual Operation Cost<br>at 9 cents / kWh<br>(year 019) | Annual Operation Cost<br>at 18 cents / kWh<br>(year 019) |
|------|--------------------------|---------------------------------------------------------|----------------------------------------------------------|
| А    | \$10,000                 | \$300<br>(1% of 50kVA load)                             | \$600<br>(1% of 50kVA load)                              |
| В    | \$5,000                  | \$600<br>(2% of 50kVA load)                             | \$1200<br>(2% of 50kVA load)                             |

6) If electricity is 9 cents / kilowatt hour, which transformer is the better buy?

7) If electricity is 18 cents a kilowatt hour, which transformer is the better buy?