ECE 331 - Solution to Homework \#1

Kirchoff's Laws, Complex Numbers. Due Wednesday, January 22nd, 4PM

1) Determine the resistance of the following circuit:

Starting from the right

$$
\begin{aligned}
& 300+300+300=1200 \\
& 1200 \| 200=171 \\
& 200+171+200=571 \\
& 571 \| 100=85 \\
& 100+85+100=285
\end{aligned}
$$

2) For the following circuit, write N equations to solve for N unknown voltage nodes (KVN)

You need three equations for three unknown voltages. Start with the voltage sources:

$$
\begin{aligned}
& V_{1}=10 \\
& V_{3}-V_{2}=3
\end{aligned}
$$

You need one more equation. Sum the currents to zero flowing away from the 3 V source (super-node V2 and V3)

$$
\left(\frac{V_{2}-V_{1}}{200}\right)+\left(\frac{V_{2}}{400}\right)+\left(\frac{V_{3}-V_{1}}{100}\right)+\left(\frac{V_{3}}{500}\right)=0
$$

Problem 3) Solve these N equations to find the voltages V1, V2, and V3
Group these three equations into common terms:

$$
\left(\frac{-1}{200}+\frac{-1}{100}\right) V_{1}+\left(\frac{1}{200}+\frac{1}{400}\right) V_{2}+\left(\frac{1}{100}+\frac{1}{500}\right) V_{3}=0
$$

Place in matrix form:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
\left(\frac{-1}{200}+\frac{-1}{100}\right) & \left(\frac{1}{200}+\frac{1}{400}\right) & \left(\frac{1}{100}+\frac{1}{500}\right)
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
10 \\
3 \\
0
\end{array}\right]
$$

Solve in MATLAB:

```
-->A = [1,0,0;0,-1,1;-1/100-1/200,1/200+1/400,1/100+1/500]
    l. 
-->B = [10;3;0]
-->V = inv(A)*B
V1 = 10.
V2 = 5.8461538
V3 = 8.8461538
```

Complex Numbers: Determine the value of Y - showing the steps to find t
4) $\quad Y=\left(\frac{10(s+3)}{(s+1)(s+5)}\right)_{s=j 4}$

$$
Y=\left(\frac{10(j 4+3)}{(j 4+1)(j 4+5)}\right)
$$

$$
\begin{aligned}
\left(\frac{10(s+3)}{(s+1)(s+5)}\right)_{s=j 4} & =0.9039-j 1.6643 \\
& =1.8939 \angle-61.49^{0}
\end{aligned}
$$

Either answer is correct.
5) $\quad e^{(2+j 3)}=\left(e^{2}\right)\left(e^{j 3}\right)$
$7.3891 \angle 3 \mathrm{rad}=7.3891 \angle 171.88^{0}$
(polar form)

$$
\begin{aligned}
e^{(2+j 3)} & =7.3891 \angle 171.88^{0} \\
& =-7.3151+j 1.0427
\end{aligned}
$$

6) $\quad Y=\ln (2+j 3)$
$Y=\ln \left(3.6056 \angle 56.31^{0}\right)$
$Y=\ln \left(e^{\ln (3.6056)} \angle 1.2825 \mathrm{rad}\right)$
$Y=\ln \left(e^{0.9828} \cdot e^{j 1.2825}\right)$
$Y=\ln \left(e^{0.9828+j 1.2825}\right)$

$$
\ln (2+j 3)=0.9828+j 1.2825
$$

$$
=1.6157 \angle 37.46^{\circ}
$$

7) $\quad(2+j 3)^{(4+j 5)}$
$=\left(e^{(0.9828+j 1.2825)}\right)^{(4+j 5)}$
$=e^{(0.9828+j 1.2825)(4+j 5)}$
$=e^{0.2159+j 10.3435}$
$=\left(e^{0.2159}\right) \angle 10.34 \mathrm{rad}$

$$
\begin{aligned}
(2+j 3)^{(4+j 5)} & =-0.7530-j 0.9864 \\
& =1.2410 \angle 127.35^{\circ}
\end{aligned}
$$

