ECE 331 - Homework \#2

Phasors, RL Circuits, Power Factor - Due Monday, Jan 27th
1a) Determine the current, Iin:
1b) Determine the power factor:
1c) Determine the power consumed by this circuit

Step 1: Convert to impedance

$$
\begin{aligned}
& 0.1 H \rightarrow j \omega L=j 37.7 \Omega \\
& 0.2 H \rightarrow j 75.4 \Omega \\
& 0.3 H \rightarrow j 113.1 \Omega
\end{aligned}
$$

Step 2: Combine in series and parallel:

$$
\begin{array}{ll}
150+j 113.1 \| 100=66.79+j 15.02 & \text { parallel } \\
(66.79+j 15.02)+(j 75.4)=66.79+j 90.42 & \text { series } \\
(66.79+j 90.42) \|(50)=36.51+j 10.36 & \text { parallel } \\
(36.51+j 10.36)+(j 37.7)=36.61+j 48.06 & \\
& \\
Z_{\text {in }}=36.61+j 48.06 &
\end{array}
$$

1a): Compute the current

$$
\begin{aligned}
& I_{\text {in }}=\frac{169 / \sqrt{2} V_{r m s}}{36.61+j 48.06 \Omega}=1.2036-j 1.5798 \\
& \begin{aligned}
I_{\text {in }} & =1.2036-j 1.5798 \\
& =1.9861 \angle-52.69^{0}
\end{aligned} \text { Amps rms }
\end{aligned}
$$

1b) The power factor is

$$
p f=\cos \left(-52.69^{0}\right)=0.6060
$$

1c) The power consumed is

$$
\begin{aligned}
& P=V_{r m s} \cdot I_{r m s} \cdot p f \\
& P=\left(120 V_{r m s}\right)\left(1.9861 A_{r m s}\right)(0.6060) \\
& P=144.43 \mathrm{~W}
\end{aligned}
$$

2a) Determine the current, Iin:
2b) Determine the power factor:
2c) Determine the power consumed by this circuit

Step 1: Convert to impedance:
$0.02 H \rightarrow j 7.54$
$2 H \rightarrow j 754$
$0.01 H \rightarrow j 3.77$
Step 2: Combine:
$(10)+(4)+(j 7.54)=14+j 7.54$
$(14+j 7.54)||(j 754)||(1000)=(13.5910+j 7.5096)$
$(13.5910+j 7.5096)+(2)+(j 3.77)=15.5910+j 11.2796$
$\operatorname{Zin}=15.5910+j 11.2796$
Step 3: Determine the current
$I=\frac{V}{Z}=\frac{120 V_{\text {rms }}}{15.5910+j 11.2796 \Omega}$
2a) $\quad \begin{aligned} I & =5.5023-j 3.6552 \\ & =6.2359 \angle-35.88^{0}\end{aligned}$ A rms
$p f=\cos \left(-35.88^{0}\right)$
2b) $\quad p f=0.8102$
$P=V_{r m s} \cdot I_{r m s} \cdot p f$
$P=(120 V)(6.2359 A)(0.8102)$
2c) $P=606 \mathrm{~W}$
3) The following data is measured for a RL circuit:

- $\mathrm{Vin}=120 \mathrm{~V}$ rms
- Iin $=35 \mathrm{~A}$ rms
- Pin $=3000$ Watts
- $\mathrm{f}=60 \mathrm{~Hz}$ ($377 \mathrm{rad} / \mathrm{sec}$)

Determine the impedance and power factor.

$$
\begin{aligned}
& |Z|=\frac{120 V}{35 A}=3.4286 \Omega \\
& p f=\frac{P}{V \cdot I}=\frac{3000 W}{(120 V)(35 A)} \\
& p f=0.7143 \\
& \theta=\arccos (0.7143)=44.41^{0} \\
& Z=3.4286 \angle 44.41^{0}
\end{aligned}
$$

4) Determine an RL series and RL parallel circuit to implement the impedance for problem \#3 (at 60Hz):

In rectangular form

$$
Z=2.4490+j 2.3995
$$

Series Model:

$$
\begin{aligned}
R_{S} & =2.4490 \\
j X_{S} & =j 2.3995
\end{aligned}
$$

Taking the inverse to find the parallel form

$$
\begin{aligned}
& \frac{1}{Z}=\frac{1}{R_{p}}+\frac{1}{j X_{p}} \\
& \frac{1}{Z}=0.2083-j 0.2041
\end{aligned}
$$

Parallel Model:

$$
\begin{aligned}
R_{p} & =4.8008 \\
j X_{p} & =j 4.8996
\end{aligned}
$$

