ECE 331 - Solution to Homework \#4

Ideal Transformers, Transformer Testing, Transformer Design, Auto-Transformers
Due Wednesday, February 19th, 4PM

1) The following circuit uses a transformer to buffer a transistor amplifier to an 8 Ohm speaker.

1a) Determine the turns ratio for this amplifier to be 90% efficient.
The efficiency is

$$
\begin{aligned}
& \eta=\frac{P_{\text {out }}}{P_{\text {in }}} \\
& 0.9=\frac{I^{2} .8 \Omega}{\left.I^{2} \cdot 8 \Omega+R\right)} \\
& \mathrm{R}=0.8888
\end{aligned}
$$

The 1000 Ohm resistor needs to look like an 0.8888 Ohm resistor at the load. To do this, you need a turns ratio of

$$
\begin{aligned}
& 0.8888 \Omega=\left(\frac{1}{N}\right)^{2} 1000 \Omega \\
& \mathrm{~N}=33.55
\end{aligned}
$$

1b) For the turn ration of part a), determine the voltage, Vin, to drive the speaker at 10 Watts.
For 10 Watts at the load,

$$
\begin{aligned}
& P=I^{2} R \\
& 10 \mathrm{~W}=I^{2} \cdot 8 \Omega \\
& I=1.118 A
\end{aligned}
$$

The voltage source is then

$$
V_{\text {in }}=I \cdot(0.888+8)=9.938 \mathrm{~V}
$$

This is on the right side of the transformer. Bringing it left by the turns ratio

$$
\begin{aligned}
& V_{\text {in }}=(33.55)(9.938 \mathrm{~V}) \\
& V_{\text {in }}=333 \mathrm{~V}
\end{aligned}
$$

You need fairly high voltages to drive an 8-Ohm speaker through a transformer.
2) The following circuit uses ideal transformers.

- Determine the voltage at the 10 Ohm load (VL), and
- Determine the efficiency of this system.

Bringing everything to the load side (right) results in the voltages and impedances shown.
The voltage at the load by voltage division is then

$$
\begin{aligned}
& V_{L}=\left(\frac{10}{10+1+0.01+0.0001}\right) 120 \mathrm{~V} \\
& V_{L}=108.99 \mathrm{~V}
\end{aligned}
$$

The efficiency is

$$
\begin{aligned}
& \eta=\frac{P_{\text {out }}}{P_{\text {total }}}=\frac{I^{2} \cdot 10 \Omega}{I^{2} \cdot(10+1+0.01+0.001)} \\
& \eta=0.9083
\end{aligned}
$$

3) The following circuit uses a more accurate model of a transformer:

- Determine the voltage at the 10 Ohm load (VL), and
- Determine the efficiency of this system.

Bring everything to the load side (right). This uses the values shown in red.

Writing 3 equations for 3 unknowns

$$
\begin{aligned}
& \left(\frac{V_{1}-120}{0.0001}\right)+\left(\frac{V_{1}}{j 300}\right)+\left(\frac{V_{1}}{100}\right)+\left(\frac{V_{1}-V_{2}}{0.01+j 0.02}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{0.01+j 0.02}\right)+\left(\frac{V_{2}}{j 3000}\right)+\left(\frac{V_{2}}{1000}\right)+\left(\frac{V_{2}-V_{3}}{1+j 2}\right)=0 \\
& \left(\frac{V_{3}-V_{2}}{1+j 2}\right)+\left(\frac{V_{3}}{10}\right)=0
\end{aligned}
$$

Putting this in MATLAB

```
a1 = [1/0.0001+1/(j*300)+1/100+1/(0.01+j*0.02),-1/(0.01+j*0.02),0]
a2 = [-1/(0.01+j*0.02),1/(0.01+j*0.02)+1/(j*3000)+1/1000+1/(1+j*2),-1/(1+j*2)]
a3 = [0,-1/(1+j*2),1/(1+j*2)+1/10]
-->A = [a1;a2;a3]
    10020.01 - 40.003333i - 20. + 40.i 0
    - 20. + 40.i 20.201 - 40.400333i - 0.2 + 0.4i
    0 - 0.2 + 0.4i 0.3 - 0.4i
-->B = [120/0.0001;0;0]
    1200000.
    0.
    0.
-->V = inv(A)*B
    119.99881 + 0.0002375i
    119.85268 - 0.1932892i
    105.43943 - 19.346523i
```

The voltage at the load is

$$
V_{L}=107.2 V \angle-10^{0}
$$

To find the efficiency, find the power out and power in. Power out is the power across the 10 Ohm resistor:

```
-->Pout = (abs(V(3)) ) ^2 / 10
```

 1149.1762
 Power (or total power) is a little harder to find. One way is to compute $\mathrm{V}^{*} \mathrm{I}$ at the source:

```
-->Iin = (120 - V(1))/0.0001
        Iin =
            11.86372 - 2.3747902i
-->Pin = real(120 * Iin) actually you need the conjugate: P=V\cdotI*
    Pin =
            1423.6465
    -->eff = Pout / Pin
    eff=
            0.8072062
```


The efficiency is $\mathbf{8 0 . 7 \%}$

This isn't very high - but you have only one customer. The efficiency goes up to 90.8% as the number of customers becomes large (meaning you can discount the core losses to zero).
4) A 10 kVA transformer has the following open-circuit and short-circuit test results:

Open-Circuit Test

- $\operatorname{Vin}=12 \mathrm{kV}$
- $\operatorname{Iin}=1 \mathrm{~A}$
- Pin = 1 Watt

The core impedance is

$$
\begin{aligned}
& Z_{\text {core }}=\left(\frac{12 k V}{1 A}\right)=12 k \Omega \\
& P_{\text {in }}=\frac{V^{2}}{R} \\
& 1 W=\frac{(12 k)^{2}}{R} \\
& R_{p}=144 M \Omega \\
& j X_{p}=j 12 k \Omega
\end{aligned}
$$

Short-Circuit Test:

- $\mathrm{Vin}=24 \mathrm{~V}$
- Iin $=2 \mathrm{~A}$
- Pin $=40 \mathrm{~W}$

Determine a model for this transformer.

$$
\begin{aligned}
& Z_{C u}=\left(\frac{24 V}{2 A}\right)=12 \Omega \\
& p f=\frac{40 W}{2 A \cdot 24 V}=0.8333 \\
& Z_{C u}=12 \angle 33.5573^{0} \\
& Z_{C u}=10+j 6.63
\end{aligned}
$$

5) For problem \#4, what current would you expect if you ran the short-circuit test at 12 kV ?

Assuming the short-circuit test was done on the high side, if you raist the voltage by a factor of 500, power goes up as 500 squared:

$$
\operatorname{Pin}=10 \mathrm{MW}
$$

You'll fry the transformer.
6) The following auto-transformer steps 12 kV down to 240 V . Determine the currents I1, I2, and I3

Power has to balance (and be 10 kVA). At the left side

$$
\begin{aligned}
& 10 k V A=(12 k V)\left(I_{1}\right) \\
& I_{1}=0.8333 A
\end{aligned}
$$

On the right side:

$$
\begin{aligned}
& 10 \mathrm{kVA}=(240 \mathrm{~V})\left(I_{2}\right) \\
& I_{2}=41.6667 \mathrm{~A}
\end{aligned}
$$

Current has to balance:

$$
\begin{aligned}
& I_{1}+I_{3}=I_{2} \\
& I_{3}=40.83 \mathrm{~A}
\end{aligned}
$$

