ECE 331 - Homework \#10

DC Permanent Magnet Motors. Due April 23th, 4PM
A single SM24580 DC servomotor is to be used for an RC car.
http://www.motiontek.ca/dcservomotor.html

1) Determine (or estimate) the motor parameters: $\mathrm{Kt}, \mathrm{Ra}, \mathrm{La}$, Inertia, Friction

SM34580E500S \$225 CA 500 CPR, single ended Encoder Latching connector, cable 4'	SM34580 Servo Motor Specification Download Motor SM34580.pdf	
SM34580 \$125 CA Brushed DC motor only		
	Frame Size	Nema34
	Constant Torque	$118 \mathrm{oz} / \mathrm{in}-0.8$ N.M
	Peak Torque	$580 \mathrm{oz} / \mathrm{in}-4.09 \mathrm{~N} . \mathrm{M}$
	Continuous Curent	7.3 Amp
	Peak Curent	38 Amp
	Maximum Speed	$\begin{aligned} & 5800 \mathrm{RPM} \pm 10 \% \text { at } 90 \mathrm{~V} \\ & 3600 \mathrm{RPM} \pm 10 \% \text { at } 50 \mathrm{~V} \end{aligned}$
	Resistance	0.993 ohm
	Inductance	1.75 mh
Contact us for Viper 95 Driver \& all required Connectors	Inertia	$3.42 \mathrm{~kg} / \mathrm{cm}^{\wedge} 2$
	Terminal Voltage	90 VDC
	US Digital E5 Encoder single end	

$$
\begin{array}{ll}
K_{t}=\frac{90 \mathrm{~V}}{5800 \mathrm{rpm}}=\frac{90 \mathrm{~V}}{607.37 \mathrm{rad} / \mathrm{sec}}=0.1482 \frac{\mathrm{Vs}}{\mathrm{rad}} & \text { (from maximum speed) } \\
K_{t}=\frac{0.8 \mathrm{Nm}}{7.3 \mathrm{~A}}=0.1096 \frac{\mathrm{Nm}}{\mathrm{~A}} & \text { (from continuous torque \& current) } \\
K_{t}=\frac{4.09 \mathrm{Nm}}{38 \mathrm{~A}}=0.1076 \frac{\mathrm{Nm}}{\mathrm{~A}} & \text { (from peak torque \& current) }
\end{array}
$$

$\mathrm{Ra}=0.993 \mathrm{Ohms}$
(from datasheet)
$\mathrm{La}=1.75 \mathrm{mH}$ (from datasheet)

Inertia $=0.000342 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
(from datasheet)
Friction: unknown

One comment from battlebots is small wheels give your torque while large wheels give you speed.
Assume you have a 90VDC power supply.
2) Plot the torque vs. speed for this motor assuming it directly drives a wheel with a diameter of 3 cm

$$
\begin{aligned}
& x=r \theta \\
& v=\frac{d x}{d t}=r \frac{d \theta}{d t}=r \omega \\
& v=0.03 \omega \\
& E_{a}=K_{t} \omega=\left(0.1096 \frac{\mathrm{~V}}{\mathrm{rad} / \mathrm{sec}}\right) \omega \\
& I_{a}=\frac{90 V-E_{a}}{R_{a}} \\
& T=K_{t} I_{a}
\end{aligned}
$$

MATLAB Code:

```
-->Kt = 0.1096;
-->Vt = 90;
-->Wmax = Vt / Kt
    821.16788
-->r = 0.03;
-->Vmax = Wmax * r
    24.635036
-->V = [0:0.001:1]' * Vmax;
-->W = V / r;
-->Ea = Kt * W;
-->Ra = 0.993;
-->Ia = (90 - Ea) / Ra;
-->T = Kt * Ia;
-->plot(V, Ia)
-->xlabel('Velocity (m/s)');
-->ylabel('Current Ia (A)');
```

3) Plot the torque vs. speed for this motor assuming it directly drives a wheel with a diameter of 30 m

Speed vs. Torque for 3 cm wheels (problem 2: red) and 30 cm wheels (problem 3: blue)

Speed vs. Force for 3 cm wheels (red) and 30 cm wheels (blue)

Assume your RC car has a mass of 20 kg . Determine the time it takes your car to complete a 100 m race
4) With 3 cm wheels

5.51 seconds (approx)

5) With 30 cm wheels

11.13 seconds (approx)

These are found using numerical integration for the motor / cart systems:

```
dt = 0.01;
x = 0;
v = 0;
Kt = 0.1096;
Vt = 90;
r = 0.3;
Ra = 0.993;
X1 = [];
V1 = [];
t = 0;
while(x<100)
    t = t + dt;
    w = v / r;
    Ea = Kt * w;
    Ia = (90 - Ea) / Ra;
    T = Kt * Ia;
    F = T / r;
    dv = F/20;
    v = v + dv*dt;
    x = x + v*dt;
    V1 = [V1; v];
    X1 = [X1; x];
    end
t = [1:length(X1)]' * dt;
plot(t,V1, 'r');
```


Speed vs. Time for 3 cm wheels (blue) and 30 cm wheels (red)

Position vs. Time for 3 cm wheels (green) and 30 cm wheels (blue)

6-7) What is the optimal diameter of wheel for this motor / car combination in a 100 m race?
About 4cm;

$d t=0.01 ;$
$\mathrm{x}=0$;
v = 0;
$K t=0.1096$;
Vt = 90;
$r=0.3$;
Ra $=0.993 ;$
TIME = [];
$t=0 ;$
for $j=1: 100$
$r=j * 0.001 ;$
t $=0$;
$\mathrm{x}=0$;
$\mathrm{v}=0$;
while (x<100)
$t=t+d t ;$
$\mathrm{w}=\mathrm{v} / \mathrm{r}$;
$\mathrm{Ea}=\mathrm{Kt}$ * w;
Ia $=(90-E a) / R a ;$
$\mathrm{T}=\mathrm{Kt}$ * Ia ;
$\mathrm{F}=\mathrm{T} / \mathrm{r}$; $\mathrm{dv}=\mathrm{F} / 20$;
$v=v+d v * d t ;$
$\mathrm{x}=\mathrm{x}+\mathrm{v}^{*} \mathrm{dt}$;

```
        end
    TIME = [TIME ; t];
    end
R = [1:100]' * 0.001;
plot(R, TIME)
```

