ECE 331 - Homework #10

DC Permanent Magnet Motors. Due April 23th, 4PM

A single SM24580 DC servomotor is to be used for an RC car.

http://www.motiontek.ca/dcservomotor.html

1) Determine (or estimate) the motor parameters: Kt, Ra, La, Inertia, Friction

SM34580E500S \$225 CA 500 CPR, single ended Encoder Latching connector, cable 4' SM34580 \$125 CA	SM34580 Servo Motor Specification <u>Download Motor SM34580.pdf</u>	
Brushed DC motor only	Frame Size	Nema34
Contact us for Viper 95 Driver & all required Connectors	Constant Torque	118 oz/in – 0.8 N.M
	Peak Torque	580 oz/in – 4.09 N.M
	Continuous	7.3 Amp
	Current	
	Peak Current	38 Amp
	Maximum	5800 RPM ±10 % at 90V
	Speed	3600 RPM ±10 % at 50V
	Resistance	0.993 ohm
	Inductance	1.75 mh
	Inertia	3.42 kg/cm^2
	Terminal	90 VDC
	Voltage	

$$K_t = \frac{90V}{5800rpm} = \frac{90V}{607.37 \text{rad/sec}} = 0.1482 \frac{V_S}{rad}$$
$$K_t = \frac{0.8Nm}{7.3A} = 0.1096 \frac{Nm}{A}$$
$$K_t = \frac{4.09Nm}{38A} = 0.1076 \frac{Nm}{A}$$

(from maximum speed)

(from continuous torque & current)

(from peak torque & current)

Ra = 0.993 Ohms La = 1.75 mH Inertia = 0.000342 $kg \cdot m^2$ Friction: unknown

(from datasheet) (from datasheet)

(from datasheet)

One comment from battlebots is small wheels give your torque while large wheels give you speed. Assume you have a 90VDC power supply.

2) Plot the torque vs. speed for this motor assuming it directly drives a wheel with a diameter of 3cm

$$x = r\Theta$$

$$v = \frac{dx}{dt} = r\frac{d\theta}{dt} = r\omega$$

$$v = 0.03\omega$$

$$E_a = K_t \omega = \left(0.1096\frac{V}{rad/sec}\right)\omega$$

$$I_a = \frac{90V - E_a}{R_a}$$

$$T = K_t I_a$$

MATLAB Code:

```
-->Kt = 0.1096;
-->Vt = 90;
-->Wmax = Vt / Kt
    821.16788
-->r = 0.03;
-->Vmax = Wmax * r
    24.635036
-->V = [0:0.001:1]' * Vmax;
-->W = V / r;
-->Ea = Kt * W;
-->Ra = 0.993;
-->Ia = (90 - Ea) / Ra;
-->T = Kt * Ia;
-->plot(V, Ia)
-->xlabel('Velocity (m/s)');
-->ylabel('Current Ia (A)');
```

3) Plot the torque vs. speed for this motor assuming it directly drives a wheel with a diameter of 30m

Speed vs. Torque for 3cm wheels (problem 2: red) and 30cm wheels (problem 3: blue)

Speed vs. Force for 3cm wheels (red) and 30cm wheels (blue)

Assume your RC car has a mass of 20kg. Determine the time it takes your car to complete a 100m race

4) With 3cm wheels

5.51 seconds (approx)

5) With 30cm wheels

11.13 seconds (approx)

These are found using numerical integration for the motor / cart systems:

```
dt = 0.01;
x = 0;
v = 0;
Kt = 0.1096;
Vt = 90;
r = 0.3;
Ra = 0.993;
X1 = [];
V1 = [];
t = 0;
while(x<100)
   t = t + dt;
   w = v / r;
   Ea = Kt * w;
   Ia = (90 - Ea) / Ra;
   T = Kt * Ia;
   F = T / r;
   dv = F/20;
   v = v + dv * dt;
   x = x + v^*dt;
   V1 = [V1; v];
   X1 = [X1; x];
   end
t = [1:length(X1)]' * dt;
plot(t,V1, 'r');
```


Speed vs. Time for 3cm wheels (blue) and 30cm wheels (red)

Position vs. Time for 3cm wheels (green) and 30cm wheels (blue)

6-7) What is the optimal diameter of wheel for this motor / car combination in a 100m race? *About 4cm;*

end

TIME = [TIME ; t];
end

R = [1:100]' * 0.001;
plot(R, TIME)