ECE 331: Test \#2 Name

Transformers - March 5, 2014

1) Ideal Transformer: Assuming ideal transformers, determine the voltage across the 10 Ohm resistor $\left(\mathrm{V}_{\mathrm{L}}\right)$ and the source current $\left(\mathrm{I}_{\mathrm{S}}\right)$. Assume all voltages and currents are rms.

V_{L} (Volts)	I_{S} (Amps)
$176.4 \angle-11^{0}$	$0.705 \angle-11^{0}$

First, remove the transformers by bringing all impedances and voltages to the right (left also works).
This is shown in blue
Find the current

$$
\begin{aligned}
& I_{L}=\frac{200 \mathrm{~V}}{(0.008+j 0.0096)+(0.12+j 0.16)+(1+j 2)+10} \\
& I_{L}=17.64 \angle-11^{0}
\end{aligned}
$$

VL is then

$$
V_{L}=10 \Omega \cdot I_{L}=176.4 \angle-11^{0}
$$

To find Is, go through the transformers. These raise the voltage by 25 x . To keep power constant, current drops by 25 x

$$
I_{s}=\frac{1}{25} \cdot 17.64 \angle-11^{0}
$$

2) Transformer Testing: The following no-load and short-circuit test data was taken from a transformer on the low-side. Determine the core and line model for the transformer

No-Load Test
(Data collected on low (240V) side
Short Circuit Test
$\mathrm{V}=240 \mathrm{~V}$ rms
$\mathrm{I}=0.2 \mathrm{~A} \mathrm{rms}$
$\mathrm{P}=4$ Watts (Data collected on low (240V) side

$$
\begin{gathered}
\mathrm{V}=24 \mathrm{~V} \mathrm{rms} \\
\mathrm{I}=12 \mathrm{Arms} \\
\mathrm{P}=250 \mathrm{Watts}
\end{gathered}
$$

Rcu	jXcu	Rcore	jXcore
$\mathbf{1 . 7 6 3 1}$	$\mathbf{j 0 . 9 9 2 9}$	$\mathbf{1 4 4 0 0}$	$\mathbf{j 1 2 0 4}$

Core:

$$
\begin{aligned}
& \left|Z_{c}\right|=\frac{240 V}{0.2 A}=1200 \\
& \angle Z=\arccos \left(\frac{4 W}{240 V \cdot 0.2 A}\right)=85.2^{0} \\
& Z_{c}=1200 \angle 85.2^{0}
\end{aligned}
$$

Convert to parallel form

$$
\frac{1}{Z_{c}}=\frac{1}{14400}+\frac{1}{j 1204}
$$

Line (copper)

$$
\begin{aligned}
& \left|Z_{C u}\right|=\frac{24 V}{12 A}=2 \\
& \angle Z_{C u}=\arccos \left(\frac{250 W}{24 V \cdot 12 A}\right)=29.76^{0}
\end{aligned}
$$

$$
Z_{C u}=2 \angle 29.76^{0}
$$

$$
Z_{C u}=1.7631+j 0.9929
$$

3) 3-Phase and Delta-Y Connections. A 3-phase transformer in V configuration is connected to a balanced load in Y configuration. Determine the line current, Ia, and the neutral current, In

Ia (Phase A line current)	In (ground current)
$67.21 \angle-44^{0}$	\mathbf{O} (balanced load)

It's a balanced load, so you know that the voltage and current at the neutral is zero.
This lets you do per-phase analysis. The line-to-neutral voltage is $\frac{1}{\sqrt{3}}$ times the line-to-line voltage.

$$
V_{A N}=\frac{2400}{\sqrt{3}} \angle-30^{0}
$$

So

$$
I_{A}=\frac{V_{A N}}{20+j 5}
$$

4) Auto-Transformer: An Auto-Transformer connects a 480 V source to a 120 V load. Determine the currents I1, I2, and I3. Assume all units are rms.

I 1	I 2	I 3
$9.48 \angle-18^{0}$	$28.46 \angle-18^{0}$	$37.94 \angle-18^{0}$

I3 is

$$
I_{3}=\frac{120 \mathrm{~V}}{3+j}=37.94 \angle-18^{0}
$$

The current I1 changes by the turn ratio

$$
I_{1}=\left(\frac{120 V}{480 V}\right) I_{3}=9.48 \angle-18^{0}
$$

I2 comes from the current summing to zero

$$
I_{2}+I_{1}=I_{3}
$$

5) Per-unit analysis: A power grid consists of two transformers and a 10 Ohm load.

5a) Give the per-unit values for Io and Zo in at each voltage using $\mathrm{Po}=100 \mathrm{kVA}$:

$\mathrm{Vo}=6000 \mathrm{~V} \mathrm{rms}$	$\mathrm{Vo}=1200 \mathrm{~V} \mathrm{rms}$	Vo $=240 \mathrm{~V} \mathrm{rms}$
$\mathrm{Po}=100 \mathrm{kVA}$	$\mathrm{Po}=100 \mathrm{kVA}$	$\mathrm{Po}=100 \mathrm{kVA}$
$\mathrm{Io}=16.67 \mathrm{~A}$	$\mathrm{Io}=83.33 \mathrm{~A}$	$\mathrm{Io}=416.67 \mathrm{~A}$
$\mathrm{Zo}=360 \mathrm{Ohms}$	$\mathrm{Zo}=14.40 \mathrm{Ohms}$	$\mathrm{Zo}=0.576 \mathrm{Ohms}$

5b) Determine the per-unit values of R1, R2, and R3

$R 1$	$R 2$	$R 3$
2.77	6.944	17.36

