Voltage, Current, Resistance, and Power

Current:

Current is the flow of electrons with 1 Amp being 1 Coulomb of electrons flowing past a point every second. (1 Coulomb $=6.02 \cdot 10^{23}$). Current is what actually carries the energy in a circuit and what causes heating (and damage).

Voltage:

Voltage is the force which tries to force current flow. 1 Amp flowing across 1 Volt delivers 1 Watt of power.

Resistance:

When you apply a voltage across a device, the current flow is not infinite. The material limits the current flow, with a mathematical model being

$$
\mathrm{V}=\mathrm{I} \mathrm{R}
$$

The resistance is a function of the material being used as well as the dimensions of the device as

$$
R=\frac{\rho L}{A}
$$

where ρ is the conductivity of the material, L is the length, and A is the cross-sectional area.

Material	Resistivity $($ Ohm-meters $)$		
Silver	$1.59 \times 10-8$	Best conductor	
Copper	$1.68 \times 10-8$		
Silicon	6.40×102		
Aluminum	$2.82 \times 10-8$		
Iron	$1.0 \times 10-7$		
Sea Water	2×101		
Teflon	1×1022	Insulator	
from www.Wikipedia.com			

For small circuits, the resistnace of copper can be assumed to be zero. For example, determine the resistance of a copper trace on a circuit board with dimensions:

Length $=10 \mathrm{~cm}$
Cross-sectional area $=0.1 \mathrm{~mm} \times 1 \mathrm{~mm}$
Solution:

$$
R=\frac{\rho L}{A}=\frac{\left(1.68 \cdot 10^{-8} \Omega m\right)(0.01 m)}{(0.0001 m) \times(0.01 m)}=0.0017 \Omega
$$

In this class, the resistance of copper can become significant.

Problem 2: An transformer has 100 windings of 12 gage copper wire around the core. Assume the core is $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ in cross section. Find the resistance of the copper wire.

Solution: From Wikipedia, 12 gage copper wire has a diameter of 2 mm

$$
R=\frac{\rho L}{A}=\frac{\left(1.68 \cdot 10^{-8} \Omega m\right)(10 \cdot 0.2 m)}{\pi \cdot(0.001 m)^{2}}=0.107 \Omega
$$

If you're dealing with 100 Amps , even 0.107 Ohms dissipates 1 kW of heat.

Problem 3: Determine the resistance of a copper transmission line. Assume the line has a length of 1000km (Montana to Minneapolis) and has a cross-sectional area of 1 cm 2

Solution

$$
R=\frac{\rho L}{A}=\frac{\left(1.68 \cdot 10^{-8} \Omega m\right)\left(10^{6} m\right)}{(0.01 m)(0.01 m)}=168 \Omega
$$

168 Ohms might seem small, but if you consider that a large power plant can produce $1,000 \mathrm{MW}$, the transmission line losses $\left(I^{2} R\right)$ can be significant. The losses depend upon the voltage:

Voltage	Current for 1000MW	Transmission Line Losses (I2R)
120 V	8.33 MA	$1.1 \times 1016 \mathrm{~W}$
10 kV	100 kA	$1.68 \times 1012 \mathrm{~W}$
1 MV	1000 A	168 MW

Even at 1MV, you're losing 16% of the energy produced in transmission line losses. This is part of the reason for this course:

- You need to increase the voltage to reduce the transmission line losses (i.e. you need transformers)
- You need more area than $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ (i.e. you need more than one transmssion line), and
- You need to move the generators closer to the demand.

Power \& RMS:

Power is the rate at which energy is delivered (Joules / second).
For DC voltages:

$$
P=V I=\frac{V^{2}}{R}=I^{2} R
$$

For AC sourses with a peak voltage of Vp ,

$$
P=\frac{1}{2} V_{p} I_{p}=\frac{1}{2} \frac{V_{p}^{2}}{R}=\frac{1}{2} I_{p}^{2} R
$$

So that you don't need to use different equations for DC and AC , rms (root-mean-squared) voltage is used. Essentially, the $1 / 2$ is distributed amoung the voltag and current so that

$$
V_{r m s}=\frac{1}{\sqrt{2}} V_{p}
$$

$$
I_{r m s}=\frac{1}{\sqrt{2}} I_{p}
$$

If you use rms voltage and current, then AC formulas are the same as DC formulas:

$$
P=V_{r m s} I_{r m s}=\frac{V_{m s s}^{m}}{R}=\frac{1}{2} I_{r m s}^{2} R
$$

You likewise need to watch and note whether you are talking about peak of rms voltages when dealing with AC circuits.

Resistors in Parallel and Series

Resistors in series add:

$$
R_{\text {total }}=R_{1}+R_{2}+R_{3}
$$

Resistors in perallel add as the sum of the invreses inverted:

$$
R_{\text {total }}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1}
$$

Example: Determine the resistance of the the following circuit:

Solution: Combine the resistors in series and parallel:

$$
\begin{array}{ll}
100+40=140 & \text { (series) } \\
140\|5300\| 1400=124.29 & \text { (parallel) } \\
124.29+5=129.29 & \text { (series) }
\end{array}
$$

This looks like a 129.29 Ohm resistor.

Kirchoff's Laws

Kirchoff's laws simply restate the conservation of voltage and current:

- If you sum the voltages around any closed path, the sum must be zero.
- If you sum the current flowing away from a point, the sum must be zero.

This allows you to solve for the voltages or currents in a circuit by writing N equations to solve for N unknowns.

Kirchoff's Voltage Nodes (KVN):

Objective: Write N voltage node equations to solve for N unknown voltages.

Procedure:

- Step 1: Define ground for a circuit.
- Step 2: Define N voltage nodes.
- Step 3: Write N equations to solve for N unknowns
- For each voltage source, write an equation $\mathrm{Vp}-\mathrm{Vm}=$ Voltage Source
- For the remaining N equations, sum the current to zero at each node
- Step 4: Solve.

Example: Find the voltages in the following circuit:

Step 1 \& 2: Done already.
Step 3: Write N equations to solve for N unknowns
Nove V1: Voltage Source:

$$
V_{1}-0=120
$$

Node V2: Sum the current flowing from node V2 to zero.

$$
\left(\frac{V_{2}-V_{1}}{20}\right)+\left(\frac{V_{2}-0}{40}\right)+\left(\frac{V_{2}-V_{3}}{30}\right)=0
$$

Node V3: Sum the current flowing from node V3 to zero.

$$
\left(\frac{V_{3}-V_{1}}{10}\right)+\left(\frac{V_{3}-V_{2}}{30}\right)+\left(\frac{V_{3}-0}{50}\right)=0
$$

Step 4: Solve.
This is the sort of problem MATLAB does extremely well. First group terms:

$$
\begin{aligned}
& V_{1}=120 \\
& \left(\frac{-1}{20}\right) V_{1}+\left(\frac{1}{20}+\frac{1}{40}+\frac{1}{30}\right) V_{2}+\left(\frac{-1}{30}\right) V_{3}=0 \\
& \left(\frac{-1}{10}\right) V_{1}+\left(\frac{-1}{30}\right) V_{2}+\left(\frac{1}{10}+\frac{1}{30}+\frac{1}{50}\right) V_{3}=0
\end{aligned}
$$

Put in matrix form

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\left(\frac{-1}{20}\right) & \left(\frac{1}{20}+\frac{1}{40}+\frac{1}{30}\right) & \left(\frac{-1}{30}\right) \\
\left(\frac{-1}{10}\right) & \left(\frac{-1}{30}\right) & \left(\frac{1}{10}+\frac{1}{30}+\frac{1}{50}\right)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
120 \\
0 \\
0
\end{array}\right]
$$

Solve in MATLAB

```
->A=[1,0,0;-1/20,1/20+1/40+1/30,-1/30;-1/10,-1/30,1/10+1/30+1/50]
```

1.

- 0.05
$0.1-0.0333333$
$-->B=[120 ; 0 ; 0]$
B $=$

120.
121.
122.

$-->V=\operatorname{inv}(A) * B$
V =
120.
85.16129
96.774194

Meaning

- $\mathrm{V} 1=120 \mathrm{~V}$
- $\mathrm{V} 2=85.162 \mathrm{~V}$
- $\mathrm{V} 3=96.774 \mathrm{~V}$

Kirchoff's Current Loops (KCL):

Objective: Write N current loop equations to solve for N unknown currents.
Procedure:

- Step 1: Define N current loops
- Step 2: Write N equations to solve for N unknowns
- For each current source, write an equation for the current
- For the remaining N equations, sum the voltages to zero around a closed-loop
- Step 3: Solve.

Example: Find the currents for the following circuit:

Solution:
Step 1: Done already.
Step 2: Sum the voltages around each loop to zero
Loop I1:

$$
10 I_{1}+30\left(I_{1}-I_{3}\right)+20\left(I_{1}-I_{2}\right)=0
$$

Loop I2:

$$
-120+20\left(I_{2}-I_{1}\right)+40\left(I_{2}-I_{3}\right)=0
$$

Loop I3:

$$
40\left(I_{3}-I_{2}\right)+30\left(I_{3}-I_{1}\right)+50 I_{3}=0
$$

Step 3: Solve.

Again, MATLAB is useful. Group terms:

$$
\begin{aligned}
& 60 I_{1}-20 I_{2}-30 I_{3}=0 \\
& -20 I_{1}+60 I_{2}-40 I_{3}=120 \\
& -30 I_{1}-40 I_{2}+120 I_{3}=0
\end{aligned}
$$

Place in matrix form:

$$
\left[\begin{array}{ccc}
60 & -20 & -30 \\
-20 & 60 & -40 \\
-30 & -40 & 120
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
120 \\
0
\end{array}\right]
$$

Solve using MATLAB

```
-->A = [60,-20,-30;-20,60,-40;-30,-40,120]
        60. - 20. - 30.
    - 20. 60. - 40.
    - 30. - 40. 120.
-->B = [0;120;0]
    B =
        0.
        120.
        0.
-->I = inv(A)*B
    I =
        2.3225806
        4.0645161
        1.9354839
```

Meaning

- $\mathrm{I} 1=2.32 \mathrm{~A}$
- $\mathrm{I} 2=4.06 \mathrm{~A}$
- $\mathrm{I} 3=1.93 \mathrm{~A}$

