Magnetic Circuits \& Inductors

Volts $=$ Magnetomotive Force
Ohms $=$ Reluctance
Amps = Flux

Material	Permiability @ 20 Gauss $(2 \mathrm{mT})$	Maximum Permiability	Saturation Flux Density B (Tesla)	Hysteresis Loss ergs / cm3	Coercive Force Oersteds
Cold Rolled Steel	180	2,000	2.1		1.8
Iron	200	5,000	2.15	5,000	1
Purified Iron	5,000	180,000	2.15	300	0.05
4\% Silicon Iron	500	7,000	1.97	3,500	0.5
78 Permalloy	8,000	100,000	1.07		0.05
Superalloy	100,000	800,000	0.8	12,000	0.002

(from CRC Handbook of Chemistry and Physics - 58th Edition)

Magnetization Curve for Iron (blue) and it's relative permiability / 5000 (green)

Magnetic Circuits

Example 1: An iron core has a cross sectional area of $1 \mathrm{~cm}^{2} .0 .2 \mathrm{~A}$ is applied with 100 turns. Determine the flux density, B. Assume $\mu_{r}=5000$.

Solution: Find the reluctance:

$$
R=\frac{l}{\mu A}=\frac{0.16 m}{(5000)\left(4 \pi \cdot 10^{-7}\right)(0.01 m)^{2}}=254,647
$$

The magnetic flux is

$$
\Phi=\frac{N I}{R}=\left(\frac{(100 \text { Turns) }(0.2 \mathrm{~A})}{254,647}\right)=78.54 \mu \mathrm{~Wb}
$$

The magnetic flux density is

$$
B=\frac{\Phi}{A}=\frac{78.54 \mu W b}{(0.01 m)^{2}}=0.785 \frac{W b}{m^{2}}=0.785 T
$$

Properties of Iron \& Saturation

The relative permiability of purified iron is only 5000 for a limited range. The iron saturates at approximately 2.15 Teslas. Likewise, for this circuit, the flux will clip at approximately

$$
\Phi_{\max } \approx\left(2.15 \frac{\mathrm{~Wb}}{\mathrm{~m}^{2}}\right)(0.01 m)^{2}=215 \mu \mathrm{~Wb}
$$

To prevent saturation, you can increase the current to 547 mA .

Problem 1: An iron core has a cross sectional area of 1 cm 2.500 mA is applied with 100 turns. Draw the circuit equivalent and find the flux in each section.

Solution:
The reluctance of each branch is

$$
R=\frac{l}{\mu A}=\frac{0.04 m}{(5000)\left(4 \pi \cdot 10^{-7}\right)(0.01 m)^{2}}=63,661
$$

The metal with the air gap is

$$
R=\frac{l}{\mu A}=\frac{0.039 m}{(5000)\left(4 \pi \cdot 10^{-7}\right)(0.01 m)^{2}}=62,070
$$

The reluctance of the air gap is

$$
R=\frac{l}{\mu A}=\frac{0.001 m}{(1)\left(4 \pi \cdot 10^{-7}\right)(0.01 m)^{2}}=7,957,747
$$

The magnetomotive force (mmf) is

$$
\mathrm{F}=(0.5 \mathrm{~A})(100 \text { Turns })=50 \mathrm{Amp} \text { turns }
$$

This gives us the following circuit:

The flux (I1 and I2) are then from solving two loop equations

$$
\begin{aligned}
& (63.6 k+63.6 k+63.6 k+63.6 k) I_{1}-(63.6 k) I_{2}=50 \\
& (63.6 k+62 k+63.6 k+7.9 M+63.6 k) I_{2}-(63.6 k) I_{1}=0
\end{aligned}
$$

Solving in MATLAB:

```
-->A = [63.6*4,-63.6;-63.6, 63.6*4+7900] * 1000
    254400. - 63600.
    - 63600. 8154400.
-->B = [50;0]
    50.
    0.
-->I = inv(A)*B
    0.0001969
    0.0000015
-->Phi = [I(1) - I(2), I2]
    0.0001954 Webers ( }\mp@subsup{\phi}{1}{}\mathrm{ )
    0.0000015 Webers ( }\mp@subsup{\phi}{2}{}
```

The flux density is

```
--> B = [Phi1; Phi2] / (0.01^2) (Teslas)
    1.9538895 Teslas (the iron bar)
    0.0153591 Teslas (the air gap)
```

Note that the magnetic fields stick to iron. The path with a small air gap has almost no flux. We'll use this later to assume all flux lines go through the iron.

Problem 2: Increase the current 10x to 5A. Computer the flux ϕ_{1} and ϕ_{2}.
Solution: If this was a linear circuit, increasing the current 10 x will increase the flux 10 x . The problem is that by doing so, the flux density becomes 19.5 Teslas - which is more than the saturation flux.
So, assume the flux density and flus in the iron bar are:

$$
\begin{aligned}
& B_{1}=2.1 \text { Teslas. } \\
& \phi_{1}=(2.1 \text { Tesla }) \cdot(0.01 \mathrm{~m})^{2} \\
& \phi_{1}=0.00021 \text { Webers }
\end{aligned}
$$

Change the circuit to fix ϕ_{1} at its saturation current:

Write the loop equations

$$
\begin{aligned}
& I_{1}-I_{2}=0.00021 \\
& -500+(63.6 k+63.6 k+63.6 k) I_{1}+(63.6 k+63.6 k+62 k+7957 k) I_{2}=0
\end{aligned}
$$

Solve in MATLAB:

```
-->A = [1,-1;63600*3,63600*2+6200+7900000]
    1. - 1.
    190800. 8033400.
-->B = [0.00021;500]
    0.00021
    500.
-->I = inv(A)*B
    0.0002659 I1
    0.0000559 I2
-->Phi = [I(1)-I(2);I(2)]
    0.00021 Webers ( }\mp@subsup{\phi}{1}{}
    0.0000559 Webers (\phi2)
-->B = Phi / (0.01 ^ 2)
    2.1 Teslas (the iron bar)
    0.5592422 Teslas (the air gap)
```

Note that by increasing the current 10 x , the magnetic flux didn't increase very much. The iron is saturated.

Problem 3: Assume the magnitization curve has the following characteristic. Determine the flux ϕ_{1} and ϕ_{2}.

Magnetization Curve for Iron (blue) and it's relative permiability / 5000 (green)

Solution: You're almost forced to use a numerical solution:

- Guess ϕ_{1} and ϕ_{2}
- Given the cross sectional area, compute B for each leg
- From the above curve (blue line), find the voltage drop across each element
- The voltages around each loop won't add up to zero.
- Adjust ϕ_{1} and ϕ_{2} and repeat until the voltages sum to zero around each loop.

This will give the most accurate estimate for the magnetic flux in the circuit, but requires numerical solutions.

