Magnetic Circuits & Inductors

Volts = Magnetomotive Force

Ohms = Reluctance

Amps = Flux

Material	Permiability @ 20 Gauss (2mT)	Maximum Permiability	Saturation Flux Density B (Tesla)	Hysteresis Loss ergs / cm3	Coercive Force Oersteds
Cold Rolled Steel	180	2,000	2.1		1.8
Iron	200	5,000	2.15	5,000	1
Purified Iron	5,000	180,000	2.15	300	0.05
4% Silicon Iron	500	7,000	1.97	3,500	0.5
78 Permalloy	8,000	100,000	1.07		0.05
Superalloy	100,000	800,000	0.8	12,000	0.002

(from CRC Handbook of Chemistry and Physics - 58th Edition)

Magnetization Curve for Iron (blue) and it's relative permiability / 5000 (green)

Magnetic Circuits

Example 1: An iron core has a cross sectional area of 1cm². 0.2A is applied with 100 turns. Determine the flux density, B. Assume $\mu_r = 5000$.

Solution: Find the reluctance:

$$R = \frac{l}{\mu 4} = \frac{0.16m}{(5000)(4\pi \cdot 10^{-7})(0.01m)^2} = 254,647$$

The magnetic flux is

$$\Phi = \frac{NI}{R} = \left(\frac{(100 \text{ Turns})(0.2\text{A})}{254,647}\right) = 78.54 \ \mu Wb$$

The magnetic flux density is

$$B = \frac{\Phi}{A} = \frac{78.54\mu Wb}{(0.01m)^2} = 0.785 \frac{Wb}{m^2} = 0.785T$$

Properties of Iron & Saturation

The relative permiability of purified iron is only 5000 for a limited range. The iron saturates at approximately 2.15 Teslas. Likewise, for this circuit, the flux will clip at approximately

$$\Phi_{\max} \approx \left(2.15 \frac{Wb}{m^2}\right) (0.01m)^2 = 215 \mu Wb$$

To prevent saturation, you can increase the current to 547mA.

Problem 1: An iron core has a cross sectional area of 1cm2. 500mA is applied with 100 turns. Draw the circuit equivalent and find the flux in each section.

Solution:

The reluctance of each branch is

$$R = \frac{l}{\mu 4} = \frac{0.04m}{(5000)(4\pi \cdot 10^{-7})(0.01m)^2} = 63,661$$

The metal with the air gap is

$$R = \frac{l}{\mu 4} = \frac{0.039m}{(5000)(4\pi \cdot 10^{-7})(0.01m)^2} = 62,070$$

The reluctance of the air gap is

$$R = \frac{l}{\mu A} = \frac{0.001m}{(1)(4\pi \cdot 10^{-7})(0.01m)^2} = 7,957,747$$

The magnetomotive force (mmf) is

F = (0.5A)(100 Turns) = 50 Amp turns

This gives us the following circuit:

The flux (I1 and I2) are then from solving two loop equations

 $(63.6k + 63.6k + 63.6k + 63.6k)I_1 - (63.6k)I_2 = 50$ $(63.6k + 62k + 63.6k + 7.9M + 63.6k)I_2 - (63.6k)I_1 = 0$ Solving in MATLAB: -->A = [63.6*4, -63.6; -63.6, 63.6*4+7900] * 1000254400. - 63600. - 63600. 8154400. -->B = [50;0]50. 0. -->I = inv(A)*B 0.0001969 0.000015 -->Phi = [I(1) - I(2), I2] Webers (ϕ_1) 0.0001954 0.0000015 Webers (ϕ_2) The flux density is

```
--> B = [Phi1; Phi2] / (0.01^2) (Teslas)

1.9538895 Teslas (the iron bar)

0.0153591 Teslas (the air gap)
```

Note that the magnetic fields stick to iron. The path with a small air gap has almost no flux. We'll use this later to assume all flux lines go through the iron.

Problem 2: Increase the current 10x to 5A. Computer the flux ϕ_1 and ϕ_2 .

Solution: If this was a linear circuit, increasing the current 10x will increase the flux 10x. The problem is that by doing so, the flux density becomes 19.5 Teslas - which is more than the saturation flux.

So, assume the flux density and flus in the iron bar are:

```
B_1 = 2.1 Teslas.

\phi_1 = (2.1 Tesla) \cdot (0.01m)^2

\phi_1 = 0.00021 Webers
```

Change the circuit to fix ϕ_1 at its saturation current:

Write the loop equations

$$I_1 - I_2 = 0.00021$$

-500 + (63.6k + 63.6k + 63.6k)I_1 + (63.6k + 63.6k + 62k + 7957k)I_2 = 0

Solve in MATLAB:

```
-->A = [1, -1; 63600 \times 3, 63600 \times 2 + 6200 + 7900000]
    1.
               - 1.
    190800.
                 8033400.
-->B = [0.00021;500]
    0.00021
    500.
-->I = inv(A)*B
    0.0002659
                     Ι1
    0.0000559
                     I2
-->Phi = [I(1)-I(2);I(2)]
                               (\oplus_1)
    0.00021
                      Webers
    0.0000559
                      Webers
                               ($<sub>2</sub>)
-->B = Phi / (0.01 ^ 2)
    2.1
                      Teslas
                                (the iron bar)
    0.5592422
                      Teslas
                                (the air gap)
```

Note that by increasing the current 10x, the magnetic flux didn't increase very much. The iron is saturated.

Problem 3: Assume the magnitization curve has the following characteristic. Determine the flux ϕ_1 and ϕ_2 .

Magnetization Curve for Iron (blue) and it's relative permiability / 5000 (green)

Solution: You're almost forced to use a numerical solution:

- Guess ϕ_1 and ϕ_2
- Given the cross sectional area, compute B for each leg
- From the above curve (blue line), find the voltage drop across each element
- The voltages around each loop won't add up to zero.
- Adjust ϕ_1 and ϕ_2 and repeat until the voltages sum to zero around each loop.

This will give the most accurate estimate for the magnetic flux in the circuit, but requires numerical solutions.