Start-Up Procedure for a DC Shunt Motor \& Dynamic Modeling

Problem: Start up a SM341100 DC permanent magnet motor. Assume it is driving a 20 kg car with 3 cm radius wheels while limiting the current draw to 40A

Note: At startup (speed $=0$), the motor willd draw

$$
I_{a}=\frac{90 \mathrm{~V}}{0.408 \Omega}=220 \mathrm{~A}
$$

which is more than the allowable peak current. To limit the starting current to 40 A , add a 1.842 Ohms resistor in series at startup.

$$
R_{\text {total }}=\frac{90 \mathrm{~V}}{40 \mathrm{~A}}=2.25 \Omega=1.842 \Omega+0.408 \Omega
$$

You can remove the 1.842 Ohm resistor when the motor gets up to speed:

$$
\begin{aligned}
& I_{a}=\frac{V_{t}-E_{a}}{R_{a}} \\
& 40 A=\frac{90 V-E_{a}}{0.408 \Omega} \\
& E_{a}=73.68 \mathrm{~V}=K_{t} \omega
\end{aligned}
$$

From the datasheet

$$
K_{t}=\frac{1.6 \mathrm{Nm}}{6.6 \mathrm{~A}}=0.2424 \frac{\mathrm{Nm}}{\mathrm{~A}}=0.2424 \frac{\mathrm{~V}}{\mathrm{rad} / \mathrm{sec}}
$$

so you take out the 1.842 Ohm resistor when the speed is

$$
\omega=\frac{73.68 \mathrm{~V}}{0.2424 \frac{\mathrm{~V}}{\text { rad sec }}}=303.93 \frac{\mathrm{rad}}{\mathrm{sec}}
$$

Simulating:

Note that intertia goes through a gear as the turn ratio square. A wheel is a gear that converts rotational to translational motion:

$$
x=r \theta
$$

Relative to the motor, the 20 kg looks like an intertia of

$$
J=(20 \mathrm{~kg})(0.03 \mathrm{~m})^{2}=0.018 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

This adds to the motor's inertia

$$
\begin{aligned}
& J_{\text {motor }}=3.47 \mathrm{~kg} \cdot \mathrm{~cm}^{2}=0.000347 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& J_{\text {total }}=0.018347 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

In SciLab:

First, if you don't add the extra resistance:


```
Kt = 0.2424;
Vt = 90;
r = 0.03;
Ra = 0.408;
J = 0.018347;
Wmax = Vt / Kt;
dt = 0.001;
w = 0;
W1 = [];
I1 = [];
t = 0;
while(w < 0.99*Wmax)
    t = t + dt;
    Ea = Kt * w;
    Ia = (90 - Ea) / Ra;
    T = Kt * Ia;
    dw = T/J;
    w = w + dw*dt;
    W1 = [W1; w];
    I1 = [I1; Ia];
    end
t = [1:length(W1)]' * dt;
plot(t,W1, 'r');
```

Now, add in 1.8 Ohms during startup:

$K t=0.2424 ;$
$\mathrm{Vt}=90$;
r = 0.03;
$\mathrm{Ra}=0.408$;
$\mathrm{J}=0.018347$;
Wmax = Vt / Kt;
$d t=0.001 ;$
$\mathrm{w}=0$;
W1 = [];
I1 = [];
t $=0$;
while(w < 0.99*Wmax)
$t=t+d t ;$
$\mathrm{Ea}=\mathrm{Kt}$ * w ;
if (w < 303.93) $\mathrm{Ra}=2.25$;
else Ra $=0.408$;
end
Ia $=(90-E a) / R a ;$
T = Kt * Ia;
$d w=T / J ;$
w = w + dw*dt;
W1 = [W1; w];
I1 = [I1; Ia];
end
$t=[1: l e n g t h(W 1)] '$ * $d t$;
plot(t,W1, 'r');

Splitting this 1.8 Ohms into two smaller resistors:
1.842 Ohms for speed < $202.64 \mathrm{rad} /$ sec
0.614 Ohms for speed $<202.64 \mathrm{rad} / \mathrm{sec}<$ speed $<303.93 \mathrm{rad} /$ sec

0 Ohms for speed $<303.93 \mathrm{rad} / \mathrm{sec}$
When $\mathrm{Ra}=1.022 \mathrm{Ohms},(0.408+0.614)$ the current is 40 A at a speed of:

$$
\begin{aligned}
& I_{a}=40 \mathrm{~A}=\frac{90 \mathrm{~V}-E_{a}}{1.022 \Omega} \\
& E_{a}=49.12 \mathrm{~V} \\
& \omega=\frac{E_{a}}{K_{t}}=202.64 \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$

The SciLab code is the same as before excetpt for computations for Ra:

```
while(w < 0.99*Wmax)
    t = t + dt;
    Ea = Kt * w;
    if (w < 202.64) Ra = 2.25; end
    if ( (w > 202.64) & (w < 303.93) ) Ra = 1.022; end
    if (w > 303.93) Ra = 0.408; end
    (etc.)
```

