DC Permanent Magenet Motor Example

Objective: Simulate the speed vs. time for a DC permanent magnet motor driving an RC car
Background: Assuming the inductance of the motor is small (it usually is, with a RL time constant on the order of milliseconds), you can ignore the inductance. The model for a permanent magnet DC motor then simplifies to the following

with the equations:

$$
\begin{array}{ll}
T=K_{t} I_{a} & \mathrm{~T}=\text { motor torque }(\mathrm{Nm}) \\
E_{a}=K_{t} \omega & \omega=\text { motor speed }(\mathrm{rad} / \mathrm{sec}) \\
I_{a}=\left(\frac{V_{t}-E_{a}}{I_{a}}\right) &
\end{array}
$$

Assume the DC motor drives an RC car with weight m and wheel with radius r . The acceleration on the car comes from:

$$
\begin{aligned}
& \text { Torque }=\text { Force } \mathrm{x} \text { distance } \\
& F=\frac{T}{r}=m \frac{d^{2} x}{d t^{2}}
\end{aligned}
$$

If you integrate acceleration once, you get velocity.
If you integrate acceleration twice, you get position.

Example: A SM23240 motor from the previous lecture drives an RC car with a mass of 10 kg with wheels having a diameter of 80 mm (radius $=40 \mathrm{~mm}$).

Problem 1: Find the velocity and position of the RC car if it starts from a stop and is powered by a constant current source of 1A.

Solution: You could solve analytically. A numerical solution is a little more clear what's going on.
If you use a spreadsheet, such as Xcel, you can compute the stuff you need as follows.

Current $=1 \mathrm{~A}$ (constant)
Torque $=\mathrm{Kt} \mathrm{Ia}=0.1133 \mathrm{Nm}$
Force on the car accelerating it is

$$
F=\frac{0.1133 \mathrm{Nm}}{0.04 m \text { radius }}=2.8325 \mathrm{~N}
$$

The acceleration is

$$
\begin{aligned}
& F=m \frac{d^{2} x}{d t^{2}}=m \ddot{x} \\
& \ddot{x}=\frac{2.8325 \mathrm{~N}}{10 \mathrm{~kg}}=0.28325 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Integrate to get velocity

$$
\dot{x}=0.28325 t(\mathrm{~m} / \mathrm{s})
$$

Integrate to get position

$$
x=0.1416 t^{2} \quad \text { (meters) }
$$

In a spreadsheet you can do this using the following

$$
=\text { means 'formula' }
$$

First, input the initial values. When computing a term, enter = first to tell Xcel this is a forumla

	A	B	C	D	E	F	G	H
1	Time	Current	Torque	Force	Acceleration	Velocity	Position	
2	0	1	$=0.1133^{*} \mathrm{~B} 2$	$=\mathrm{c} 2 / 0.04$	$=\mathrm{d} 2 / 10$	0	0	
3								
4								

For the following rows, use numerical integration for velocity and position
velocity $=$ integral of acceleration

$$
=\text { previous velocity }+\left(\frac{d v}{d t}\right) d t
$$

	A	B	C	D	E	F	G	H
1	Time	Current	Torque	Force	Acceleration	Velocity	Position	
2	0	1	0.1133	2.8325	0.2832	0	0	
3	$=A 2+0.1$	1	$=0.1133^{\star} \mathrm{B} 3$	$=\mathrm{C} 3 / 0.04$	$=\mathrm{D} 3 / 10$	$=\mathrm{F} 2+\mathrm{E} 3^{*} 0.1$	$=\mathrm{G} 2+\mathrm{F}^{*} 0.1$	
4								

If you copy row 3 and past to rows $4 . .20$, the formulas are copies with the equations shifted down accordingly

	A	B	C	D	E	F	G	H
1	Time	Current	Torque	Force	Acceleration	Velocity	Position	
2	0	1	0.1133	2.8325	0.2832	0	0	
3	=A2+0.1	1	$=0.1133^{*} \mathrm{~B} 3$	$=\mathrm{C} 3 / 0.04$	$=\mathrm{D} 3 / 10$	$=\mathrm{F} 2+\mathrm{E} 2^{*} 0.1$	$=\mathrm{G} 2+\mathrm{F} 2^{*} 0.1$	
4	=A3+0.1	1	$=0.1133^{*} \mathrm{~B} 4$	$=\mathrm{C} 4 / 0.04$	$=\mathrm{D} 4 / 10$	$=\mathrm{F} 3+\mathrm{E} 3^{*} 0.1$	$=\mathrm{G} 3+\mathrm{F} 3^{*} 0.1$	
5	=A4+0.1	1	$=0.1133^{*} \mathrm{~B} 5$	$=\mathrm{C} 5 / 0.04$	$=\mathrm{D} 5 / 10$	$=\mathrm{F} 4+\mathrm{E} 4 * 0.1$	$=\mathrm{G} 4+\mathrm{F} 4 * 0.1$	

or with numbers

	A	B	C	D	E	F	G	H
1	Time	Current	Torque	Force	Acceleration	Velocity	Position	
2	0	1	0.11	2.83	0.28	0	0	
3	0.1	1	0.11	2.83	0.28	0.03	0	
4	0.2	1	0.11	2.83	0.28	0.06	0	
5	0.3	1	0.11	2.83	0.28	0.08	0.01	
6	0.4	1	0.11	2.83	0.28	0.11	0.02	
7	0.5	1	0.11	2.83	0.28	0.14	0.03	
8	0.6	1	0.11	2.83	0.28	0.17	0.04	
9	0.7	1	0.11	2.83	0.28	0.2	0.06	
10	0.8	1	0.11	2.83	0.28	0.23	0.08	
11	0.9	1	0.11	2.83	0.28	0.25	0.1	
12	1	1	0.11	2.83	0.28	0.28	0.13	

You can then plot the position and speed vs. time

Problem 2: Change the problem so that the voltage is contant, 30 V
Solution: Add a column for the back EMF, Ea

	A	B	C	D	E	F	G	H	I
1	Time	Vin	$\mathrm{w}(\mathrm{rad} / \mathrm{sec})$	Ea	la	Force	Acceleration	Velocity	Position
2	0	30	0	$=$ C2 $^{*} 0.1133$	=(B2-D2)/ 2.739	=E2*0.1133/ 0.04	$=\mathrm{F} 2 / 10$	0	
3									
4									
5									

Copy to the next row

	A	B	C	D	E	F	G	H	I
1	Time	Vin	$\mathrm{w}(\mathrm{rad} / \mathrm{sec})$	Ea	la	Force	Acceleration	Velocity	Position
2	0	30	0	$=\mathrm{C} 2^{*} 0.1133$	$=(\mathrm{B} 2-\mathrm{D} 2) / 2.739$	$=\mathrm{E} 2^{*} 0.1133 / 0.04$	$=\mathrm{F} 2 / 10$	0	0
3	$=\mathrm{A} 2+0.1$	30	$=\mathrm{H} 3$	$=\mathrm{C} 3^{*} 0.1133$	$=(\mathrm{B} 3-\mathrm{D} 3) / 2.739$	$=\mathrm{E} 3^{*} 0.1133 / 0.04$	$=\mathrm{F} 3 / 10$	$=\mathrm{H} 2+0.1^{*} \mathrm{G} 2$	$=\mathrm{I} 2+0.1^{*} \mathrm{H} 2$
4									
5									

Copy to the rest of the table

	A	B	C	D	E	F	G	H	I
1	Time	Vin	w (rad/sec)	Ea	la	Force	Acceleration	Velocity	Position
2	0	30	0	= C2*0.1133	=(B2-D2)/2.739	=E2*0.1133/0.04	=F2/10	0	0
3	$=\mathrm{A} 2+0.1$	30	= H 3	=C3*0.1133	=(B3-D3)/2.739	=E3*0.1133/0.04	=F3/10	= $\mathrm{H} 2+0.1 * \mathrm{G} 2$	$=12+0.1 * \mathrm{H} 2$
4	$=\mathrm{A} 3+0.1$	30	= H 4	=C4*0.1133	=(B4-D4)/2.739	=E4*0.1133/0.04	=F4/10	= $\mathrm{H} 3+0.1^{*} \mathrm{G} 3$	$=13+0.1 * \mathrm{H} 3$
5	=A4 + 0.1	30	= H 5	=C5*0.1133	=(B5-D5)/2.739	=E5*0.1133/0.04	=F5/10	= $\mathrm{H} 4+0.1 * \mathrm{G} 4$	$=14+0.1 * \mathrm{H} 4$

With numbers:

	A	B	C	D	E	F	G	H	I
1	Time	Vin	$\mathrm{w}(\mathrm{rad} / \mathrm{sec})$	Ea	la	Force	Acceleration	Velocity	Position
2	0	30	0	0	10.95	31.02	3.1	0	0
3	0.1	30	0.31	0.04	10.94	30.99	3.1	0.31	0
4	0.2	30	0.62	0.07	10.93	30.95	3.1	0.62	0.03
5	0.3	30	0.93	0.11	10.91	30.92	3.09	0.93	0.09
6	0.4	30	1.24	0.14	10.9	30.88	3.09	1.24	0.19
7	0.5	30	1.55	0.18	10.89	30.84	3.08	1.55	0.31
8	0.6	30	1.86	0.21	10.88	30.81	3.08	1.86	0.46
9	0.7	30	2.16	0.25	10.86	30.77	3.08	2.16	0.65
10	0.8	30	2.47	0.28	10.85	30.73	3.07	2.47	0.87
11	0.9	30	2.78	0.31	10.84	30.7	3.07	2.78	1.11

Problem: Vary the input votlage and the wheel diameter.
Solution: In Xcel, using a dollar sign in the formula locks the location of the variable

$$
=\$ \mathrm{~b} \$ 2
$$

keeps the reference to cell (B2) even when you copy the cell.
So, define two cells to be the wheel diameter and input voltage

	A	B	C	D	E	F	G	H	I
1	Vin	30							
2	radius	0.04							
3	Time	Vin	w (rad/sec)	Ea	la	Force	Acceleration	Velocity	Position
4	0	=\$b\$1	0	= C4*0.1133	$\begin{gathered} =(\text { B4-D4)/ } \\ 2.739 \end{gathered}$	=E4*0.1133/\$b\$2	=F4/10	0	0
5	$=\mathrm{A} 4+0.1$	30	= H 5	$=C 5 * 0.1133$	$\begin{gathered} =(\text { B5-D5)/ } \\ 2.739 \end{gathered}$	=E5*0.1133/\$b\$2	=F5/10	$\begin{aligned} & =\mathrm{H} 4+ \\ & 0.1^{*} \mathrm{G} 4 \end{aligned}$	$=14+0.1 * \mathrm{H} 4$

This allows you to adjust a parameter by changing one cell and seeing what happens.

