ECE 341 - Test \#3

Markov Chains and Data Analysis
Open-Book, Open Notes. Calculators, Matlab, Tarot cards, Internet allowed. Just not other people.
Please sign if possible (i.e. you did not get help from someone else).
No aid given, received, or observed: \qquad
Due Monday, June 15th, 8am
Please make the subject "ECE 341 Test3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Markov Chains: Two people, A and B, are playing a game.

- A has a 60% chance of winning A gains +1 point on a win
- There is a 15% chance of a tie A loses one point on a tie
- A has a 25% chance of losing A loses two points on a loss

If A reaches +3 points, A wins the match
If A reaces -3 points, B wins the match
1a) What is the state transition matrix (going from k games to $\mathrm{k}+1$ games)

$$
\left[\begin{array}{c}
p 3(k+1) \\
p 2(k+1) \\
p 1(k+1) \\
e(k+1) \\
m 1(k+1) \\
m 2(k+1) \\
m 3(k+1)
\end{array}\right]=\left[\begin{array}{ccccccc}
1 & 0.6 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 0 & 0 & 0 & 0 \\
0 & 0.15 & 0 & 0.6 & 0 & 0 & 0 \\
0 & 0.25 & 0.15 & 0 & 0.6 & 0 & 0 \\
0 & 0 & 0.25 & 0.15 & 0 & 0.6 & 0 \\
0 & 0 & 0 & 0.25 & 0.15 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.25 & 0.4 & 1
\end{array}\right]\left[\begin{array}{c}
p 3(k) \\
p 2(k) \\
p 1(k) \\
e(k) \\
m 1(k) \\
m 2(k) \\
m 3(k)
\end{array}\right]
$$

1b) What is the chance that A will win the match assuming they start out at even (A has zero points)?

```
A = [1,0,0,0,0,0,0;0.6,0,0.15,0.25,0,0,0];
A = [A;0,0.6,0,0.15,0.25,0,0];
A = [A;0,0,0.6,0,0.15,0.25,0];
A = [A;0,0,0,0.6,0,0.15,0.25];
A = [A;0,0,0,0,0.6,0,0.4];
A = [A;0,0,0,0,0,0,1];
A = A'
\begin{tabular}{rrrrrrr}
1.0000 & 0.6000 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.6000 & 0 & 0 & 0 & 0 \\
0 & 0.1500 & 0 & 0.6000 & 0 & 0 & 0 \\
0 & 0.2500 & 0.1500 & 0 & 0.6000 & 0 & 0 \\
0 & 0 & 0.2500 & 0.1500 & 0 & 0.6000 & 0 \\
0 & 0 & 0 & 0.2500 & 0.1500 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.2500 & 0.4000 & 1.0000
\end{tabular}
```

$A^{\wedge} 100$

1.0000	0.8157	0.6402	0.4788	0.3157	0.1894	0
0	0.0000	0.0000	0.0000	0.0000	0.0000	0
0	0.0000	0.0000	0.0000	0.0000	0.0000	0
0	0.0000	0.0000	0.0000	0.0000	0.0000	0
0	0.0000	0.0000	0.0000	0.0000	0.0000	0
0	0.0000	0.0000	0.0000	0.0000	0.0000	0
0	0.1843	0.3598	0.5212	0.6843	0.8106	1.0000

A has a $\mathbf{4 7 . 8 8 \%}$ chance of winning the match

1c) What is the z -transform for the probability of A winning after k games?

```
X0 = [0;0;0;1;0;0;0];
C = [1,0,0,0,0,0,0];
G = ss(A,X0,C,0,1);
zpk(G)
    0.216 (z+0.3) (z-0.3)
(z-1) (z-0.7933) (z-0.2547) (z+0.2306) (z^2 + 0.8174z + 0.3477)
Sampling time (seconds): 1
```

Times z to get the z -transform
$0.216(z+0.3)(z-0.3) z$
$(z-1)(z-0.7933)(z-0.2547)(z+0.2306)\left(z^{\wedge} 2+0.8174 z+0.3477\right)$

1d) From the z-transform, determine the probability of A winning

$$
\left(\frac{0.216(z+0.3)(z-0.3) z}{(z-0.7933)(z-0.2547)(z+0.2306)\left(z^{2}+0.8174 z+0.3477\right)}\right)_{z=1}=0.4788
$$

2) t-Test (One data set). A Monte-Carlo simulation was run 10 times. Each simulation dealt 10,000 hands for 5-card draw and counted the number of times you got a 3-of-a-kind.
```
# hands ={\begin{array}{llllllllllll}{788}&{752}&{755}&{800}&{748}&{787}&{777}&{758}&{828}&{796}\end{array}}
```

2a) If I run this experiment an 11th time, what number will I get with a confidence level of 90% ? (5% tails)

- $\mathrm{t}=1.8333$

```
DATA = [\begin{array}{llllllllllllll}{788}&{752 755 800 748 787 777 758}&{828}&{796 ]}\end{array}]
x = mean(DATA)
x = 778.9000
s = std(DATA)
s = 25.7917
[x - 1.833*s, x + 1.833*s]
    731.6238 826.1762
```

2b) What is the 90% confidence interval for the actual probability of getting 3-of-a-kind with 5-card draw based upon this data?

```
x = mean(DATA)
x = 778.9000
s = std(DATA) / sqrt(10)
s = 8.1560
[x - 1.833*s, x + 1.833*s]
ans = 763.9500 793.8500
```

3) t-Test (Two data sets): The average temperatures in March and November from 1942-2019 in Fargo, ND are: (web site: http://www.bisonacademy.com/ECE111/Code/Fargo_Weather_Monthly_Avg.txt)

March: \{ $\begin{array}{llllllllllllllll}33.8 & 17.6 & 20.2 & 35.1 & 34.7 & 24.7 & 17.7 & 22.1 & 20.7 & 15.7 & 20.4 & 28.0 & 25.5 & 16.8 & 19.5 & 27.5\end{array}$ $\begin{array}{lllllllllllllllllll}30.9 & 30.9 & 15.5 & 34.5 & 22.7 & 29.0 & 20.8 & 13.7 & 29.7 & 26.8 & 34.0 & 15.2 & 18.6 & 27.6 & 23.9 & 36.0 & 22.9 & 18.4\end{array}$ $\begin{array}{llllllllllllllllllll}22.9 & 32.0 & 23.5 & 20.4 & 20.7 & 33.5 & 22.9 & 29.8 & 23.4 & 32.8 & 31.6 & 31.4 & 29.5 & 20.0 & 31.4 & 30.3 & 32.6 & 25.6\end{array}$ $\begin{array}{llllllllllllllllllll}30.5 & 28.3 & 17.3 & 20.1 & 26.5 & 31.1 & 35.2 & 22.9 & 20.0 & 24.7 & 30.3 & 28.0 & 27.4 & 31.6 & 22.8 & 24.0 & 35.4 & 20.5\end{array}$ $\left.\begin{array}{llllllll}41.6 & 17.3 & 22.3 & 33.5 & 38.3 & 29.5 & 26.2 & 19.8\end{array}\right\}$

November: $\left\{\begin{array}{lllllllllllllllll}27.5 & 29.6 & 32.9 & 26.0 & 27.1 & 22.2 & 29.1 & 34.1 & 22.3 & 21.0 & 30.8 & 35.1 & 34.5 & 18.8 & 30.5 & 28.9\end{array}\right.$
$\begin{array}{llllllllllllllllll}29.7 & 20.5 & 29.9 & 30.1 & 35.0 & 34.7 & 29.2 & 26.0 & 23.1 & 29.0 & 31.0 & 30.5 & 27.8 & 29.6 & 28.5 & 25.1 & 29.2 & 31.1\end{array}$ $\begin{array}{lllllllllllllllllll}23.2 & 25.6 & 22.7 & 24.5 & 33.0 & 35.4 & 24.1 & 31.2 & 29.7 & 15.4 & 23.1 & 33.4 & 27.5 & 24.0 & 32.1 & 22.0 & 27.3 & 26.6\end{array}$ $\begin{array}{llllllllllllllllll}34.0 & 21.2 & 17.7 & 23.2 & 29.3 & 37.1 & 25.9 & 39.7 & 27.9 & 24.9 & 34.2 & 31.2 & 31.9 & 31.1 & 31.7 & 38.4 & 29.2 & 33.8\end{array}$ $\left.\begin{array}{llllllllll}30.3 & 28.2 & 22.8 & 36.2 & 41.8 & 28.3 & 22.4 & 22.0\end{array}\right\}$

3a) What is the probability that March 2021 will be warmer than November 2021?

```
Xw = mean(March) - mean(Nov)
Xw = -2.5013
Sw = sqrt( var(March) + var(Nov) )
Sw = 8.1856
t = Xw / Sw
t = -0.3056
```

From StatTrek, this t-score with 77 degrees of freedom (78 data points) corresponds to a probability of 0.3084
There is a 38.04\% chance that March 2021 will be warmer than November 2021

3b) What is the probability that March is warmer than November?

```
Xw = mean(March) - mean(Nov)
Xw = -2.5013
Sw = sqrt( var(March)/78 + var(Nov)/78 )
Sw = 0.9268
t = Xw / Sw
t = -2.6987
```

From StatTrek, a t-score of -2.6987 corresponds to a probability of 0.0043

There is a $\mathbf{0 . 4 3 \%}$ chance that March is warmer than November

4) Chi-Squared Test: The following Matlab code generated 100 random values for X :

```
X = zeros(1,100);
for i=1:100
    X(i) = sum(-5* log(1 - rand(3,1)));
    end
```

It is conjectured that X has an exponential distribution with a mean of 15

$$
f(x)=\left(\frac{1}{15}\right) e^{-t / 15} u(t)
$$

4a) Generate 100 values for X and give the sorted results (Matlab command $\operatorname{sort}(X)$)

4b) Determine if X does or does not have this exponential pdf using a Chi-squared test.
Split the data into N bins. Space the bins every 5 seconds (somewhat arbitrary)

0-5	5-10	10-15	15-20	20-25	25-30	$30+$
3.1138	5.0978	10.1052	15.3895	20.4452	25.5571	31.5335
4.4660	5.7065	10.2525	15.3941	20.8665	26.5399	66.2146
4.7383	6.2805	10.2809	15.4975	21.7754	26.6183	
4.7624	6.4941	10.4788	15.6418	21.9181	27.1296	
4.7786	6.8421	10.6490	15.7049	22.1857	27.2432	
4.8436	6.8523	10.8053	15.7082	22.4459	27.4440	
4.8866	7.0184	11.0624	15.7389	24.3366	29.2756	
4.9346	7.0591	11.3872	16.2524	24.7308	30.0066	
	7.2585	11.7600	17.0743	24.7654		
	7.3949	11.8243	17.1574	24.8263		
	7.5951	11.8715	17.1707	24.9744		
	7.7765	12.1728	17.9278			
	7.9319	12.3226	18.4223			
	7.9553	12.3487	18.9780			
	8.3896	12.4203	19.1629			
	8.4584	12.9772	19.1834			
	8.5460	12.9952	19.3254			
	8.5630	13.2287	19.7832			
	8.8428	13.4827	19.7932			
	9.1138	13.4863				
	9.1169	13.5290				
	9.1393	13.5295				
	9.5615	14.0771				
	9.6115	14.2606				
	9.9383	14.4555				
		14.4559				
		14.5053				

Compute the chi-squred score:

bin	p	np	N	
$0-5$	0.2835	28.35	8	14.6075
$5-10$	0.2031	20.31	25	1.0830
$10-15$	0.1455	14.55	27	10.6531
$15-20$	0.1043	10.43	19	7.0417
$20-25$	0.0747	7.47	11	1.6681
$25-30$	0.0535	5.35	8	1.3126
$30+$	0.1353	13.53	2	9.8256
			Total	46.1917

From StatTrek. a chi-squred value of 46.19 corresponds to a probability of 1.000 (> 0.99995) I am more than $\mathbf{9 9 . 9 9 9 5 \%}$ certain that this data is not from an exponential distribution

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text
boxes.
- Click the Calculate button to compute values for the other text boxes.
Chi-square critical value (CV)
$P\left(X^{2}<46.19\right)$ \square $P\left(X^{2}>46.19\right)$ \square

5) F-Test (Three data sets): The average temerature in Fargo since 1942 in the months of June, July, and August are: (http://www.bisonacademy.com/ECE111/Code/Fargo_Weather_Monthly_Avg.txt)

June:
62.663 .765 .560 .364 .761 .463 .865 .665 .560 .767 .364 .965 .365 .470 .762 .759 .768 .163 .368 .666 .268 .8 67.263 .966 .162 .664 .157 .367 .867 .466 .964 .764 .465 .268 .566 .564 .765 .465 .762 .859 .166 .065 .760 .0 67.569 .173 .864 .166 .970 .161 .963 .168 .271 .467 .068 .963 .466 .362 .765 .969 .065 .462 .568 .268 .569 .8 63.663 .666 .566 .869 .967 .567 .267 .168 .867 .870 .367 .1

July:
68.873 .069 .368 .671 .271 .571 .271 .367 .968 .569 .769 .971 .874 .568 .075 .367 .372 .271 .470 .468 .873 .6 74.068 .573 .867 .969 .668 .371 .865 .068 .368 .273 .674 .271 .772 .269 .571 .971 .871 .170 .973 .570 .668 .9 71.574 .075 .875 .870 .070 .264 .367 .067 .670 .067 .869 .271 .771 .570 .672 .573 .070 .468 .271 .374 .974 .0 70.366 .572 .074 .576 .671 .769 .472 .571 .972 .170 .972 .2

5a) What is the probability that the variance of June is different than the variance of July?

```
F = var(June) / var(July)
F = 1.4402
```

Frrom StatTrek, this corresponds to a probability of 0.94

It is $\mathbf{9 4 \%}$ likely that June has a higher variance than July

- Enter values for degrees of freedom.
- Enter a value for one, and only one, of the remaining text boxes.
- Click the Calculate button to compute a value for the blank text
box.
Degrees of freedom $\left(v_{1}\right)$ Degrees of freedom $\left(v_{2}\right)$ Cumulative prob: $P(F \leq 1.4402)$ f value $\square 77$

5b) What is the probability that

- June 1942-1967
- June 1968-1993
- June 1994-2019
all have the same average temeprature using an ANOVA test?

```
A = June (1:26);
B = June(27:52);
C = June(53:78);
Na = length(A);
Nb = length(B);
Nc = length(C);
Xa = mean(A);
Xb = mean(B);
Xc = mean(C);
Na = length(A);
Nb = length(B);
NC = length(C);
G = mean([A,B,C])
k = 3;
N}=\textrm{Na}+\textrm{Nb}+\textrm{NC
MSSb = (Na*(Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*var(A) + (Nb-1)*var (B) + (NC-1)*var (C)) / (N-k)
F = MSSb / MSSw
G = 65.7269
N = 78
MSSb = 36.2458
MSSw = 8.4158
F = 4.3069
```

From StatTrek, it is 98% certain that these three time periods do not have the same average temperature

- Enter values for degrees of freedom. - Enter a value for one, and only one, of the remaining text boxes. - Click the Calculate button to compute a value for the blank text box.	
Degrees of freedom (V_{1})	2
Degrees of freedom (v_{2})	75
Cumulative prob: $\mathrm{P}(\mathrm{~F} \leq 4.3069)$	0.98
f value	4.3069

