ECE 341 - Homework \#1 Solution

Tree Diagrams and Enumeration. Due Wednesday, May 20th
Please make the subject "ECE 341 HW\#1" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Two teams, A and B, are playing a best of 5 game series. (The series is over once one team wins 3 games). The probability of A winning any given game is 0.6 . Draw the tree diagram for all possible outcomes of the series.

2) List all possible combinations of rolling a 4 -sided die (d4) and a 6 -sided die (d6) (enumaration).

There are 24 possible combinations

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$

Also determine the probability $\mathrm{X}\{1 . .6\}$ where X is the largest of the two numbers.

```
x
1: (1,1)
2: (1,2) (2,1) (2,2)
3: (1,3) (2,3) (3,3) (3,1) (3,3)
4: (1,4) (2,4) (2,4) (4,4) (4,3) (4,2) (4,1)
5: (1,5) (2,5) (3,5) (4,5)
6: (1,6) (2,6) (3,6) (4,6)
```

The odds are then

1:	$1 / 24$
2:	$3 / 24$
3:	$5 / 24$
4:	$7 / 24$
5:	$4 / 24$
6:	$4 / 24$

Two players, A and B , are playing a game of dice.

- Player A rolls a d4 and a d6 and takes the largest of the two numbers (i.e. problem \#2)
- Player B rolls a 6-sided die and adds one to the total.

Player A wins on ties.
3) What is the conditional probability

- Player A wins given B's score is 3 (B rolled a 2)

1: 1/24
2: 3/24
3: 5/24
4: 7/24
5: 4/24
6: 4/24

There are 20 ways A can roll 2 or higher.
The probability that A wins is 20/24
4) What is the probability that player A will win any given game?

Use conditional probabilities

B's Roll	2	3	4	5	6	7
$p(B)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$
$p(A \mid B)$	$23 / 24$	$20 / 24$	$15 / 24$	$8 / 24$	$4 / 24$	0
$p(A \mid B) p(B)$	$23 / 144$	$20 / 144$	$15 / 144$	$8 / 144$	$4 / 144$	$0 / 144$

The total is then $70 / 144=0.486$

A has a 48.6% chance of winning any given game (meaning bet on B)

