ECE 341 - Homework \#3

Dice Games and z-Transform. Due Friday, May 22nd
Please make the subject "ECE 341 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Farkle

1) Compute the odds or rolling a 3 of a kind, 3 of a kind (two triplets) in Farkle

$$
\text { dice }=x x x y y y
$$

The number of ways you can roll 6 dice is

$$
N=6^{6}=46,656
$$

The number of ways you can get two triplets is

$$
\begin{aligned}
& M=(6 \text { numbers choose } 2)(6 \text { spots for } x \text {, choose } 3)(3 \text { remaining spots for } y \text {, choose } 3) \\
& M=\binom{6}{2}\binom{6}{3}\binom{3}{3}=300
\end{aligned}
$$

The odds of getting two triplets is

$$
p=\left(\frac{M}{N}\right)=\left(\frac{300}{46,656}\right)=0.00643
$$

With a value of 2500 points, this adds to the expected value or rolling all six dice

$$
2500 p=16.075
$$

Running a Monte-Carlo simulation in Matlab results in 647 / 100,000 cases of two triplets

$$
\mathrm{p}=0.006470 \text { (experimental) }
$$

2) Compute the odds of rolling 3 of a kind in Farkle.
dice $=\mathrm{xxx} \mathrm{abc}$
$M=(6$ numbers choose 1 for $x)(6$ spots for x, choose 3$)(5$ other numbers pick 1 for a)
(5 other numbers for b pick 1)(5 other numbers for c pick 1)
minus the case where $\mathrm{a}=\mathrm{b}=\mathrm{c}$ (300 ways from problem \#1)

$$
\begin{aligned}
M & =\binom{6}{1}\binom{6}{3}\binom{5}{1}\binom{5}{1}\binom{5}{1}-300 \\
M & =15,000-300=14,700
\end{aligned}
$$

The probabity of getting three of a kind is thus

$$
p=\left(\frac{14,700}{46,656}\right)=0.315
$$

Using a Monte-Carlo simulation of rolling 6 dice, the chance of getting 3 of a kind is

$$
\mathrm{p}=30,780 / 100,000=0.30780
$$

Reasonably close to what we calculated.

z-Transforms

Assume X and Y have the following z -transforms

$$
\begin{array}{ll}
X=\left(\frac{1}{2}\right)\left(\frac{z+1}{z}\right) & \text { bernoulli trial (coin toss) } \\
Y=\left(\frac{1}{3}\right)\left(\frac{z^{2}+z+1}{z^{2}}\right) & \text { uniform distribution (3-sided die) }
\end{array}
$$

3) Determine the z -transform and inverse z -transform for XX

XX is

$$
\begin{aligned}
& X X=\left(\frac{1}{2}\right)\left(\frac{z+1}{z}\right) \cdot\left(\frac{1}{2}\right)\left(\frac{z+1}{z}\right) \\
& X X=\left(\frac{1}{4}\right)\left(\frac{z^{2}+2 z+1}{z^{2}}\right) \quad \text { binomial distribution }
\end{aligned}
$$

You can also write this as

$$
X X=\left(\left(\frac{1}{4}\right)+\left(\frac{1}{2}\right) z^{-1}+\left(\frac{1}{4}\right) z^{-2}\right)
$$

pdf: Apply the definition of z-transform

$$
x x(k)=\left(\frac{1}{4}\right) \delta(k)+\left(\frac{1}{2}\right) \delta(k-1)+\left(\frac{1}{4}\right) \delta(k-2)
$$

4) Determine the z-transform and inverse z-transform for XY

$$
\begin{array}{ll}
X=\left(\frac{1}{2}\right)\left(\frac{z+1}{z}\right) & \text { bernoulli trial (coin toss) } \\
Y=\left(\frac{1}{3}\right)\left(\frac{z^{2}+z+1}{z^{2}}\right) & \text { uniform distribution (3 sided die) }
\end{array}
$$

z-transform of XY (also known as the moment generating function)

$$
\begin{aligned}
& X Y=\left(\frac{1}{6}\right)\left(\frac{z+1}{z}\right)\left(\frac{z^{2}+z+1}{z^{2}}\right) \\
& X Y=\left(\frac{1}{6}\right)\left(\frac{z^{3}+2 z^{2}+2 z+1}{z^{3}}\right)
\end{aligned}
$$

To take the inverse z-transform, simply apply the definition of z-transform moment generating funciton:

$$
X Y=\left(\left(\frac{1}{6}\right)+\left(\frac{2}{6}\right) z^{-1}+\left(\frac{2}{6}\right) z^{-2}+\left(\frac{1}{6}\right) z^{-3}\right)
$$

pdf

$$
x y(k)=\left(\frac{1}{6}\right) \delta(k)+\left(\frac{2}{6}\right) \delta(k-1)+\left(\frac{2}{6}\right) \delta(k-2)+\left(\frac{1}{6}\right) \delta(k-3)
$$

5) Determine the z-transform and inverse z-transform of $X Y$

$$
\begin{array}{ll}
X=0.2\left(\frac{z}{z-0.8}\right) & \text { geometric distribution } \\
Y=0.5\left(\frac{z}{z-0.5}\right) & \text { geometric distribution }
\end{array}
$$

Solution: (moment generating function):

$$
X Y=0.1\left(\frac{z}{z-0.8}\right)\left(\frac{z}{z-0.5}\right) \quad \quad \text { Pascal distribution }
$$

Inverse z-transform (pdf)

$$
\begin{aligned}
& X Y=\left(\frac{0.1 z}{(z-0.8)(z-0.5)}\right) z \\
& X Y=\left(\left(\frac{0.2667}{z-0.8}\right)+\left(\frac{-0.1667}{z-0.5}\right)\right) z \\
& X Y=\left(\frac{0.2667 z}{z-0.8}\right)+\left(\frac{-0.1667 z}{z-0.5}\right) \\
& x y(k)=\left(0.26667(0.8)^{k}-0.1667(0.5)^{k}\right) u(k)
\end{aligned}
$$

