ECE 341 - Solution to Homework \#4

Binomial and Uniform Distributions. Due Tuesday, May 26th
Please make the subject "ECE $341 \mathrm{HW} \# 4$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Binomial Distribution

Assume you toss a coin with a probability of a heads being 0.8

$$
X(z)=\left(\frac{0.2 z+0.8}{z}\right)=(0.2)+(0.8)\left(\frac{1}{z}\right)
$$

1) Determine the probability of tossing 6 heads in 8 tosses

Eight tosses have a binomial distribution with $\mathrm{p}=0.8$

$$
\begin{aligned}
& p(m)=\binom{n}{m} p^{m} q^{n-m} \\
& p(6)=\binom{8}{6}(0.8)^{6}(0.2)^{2} \\
& p(6)=0.2936
\end{aligned}
$$

You can also solve this problem using convolution:

```
X = [0.2,0.8];
X2 = conv(X,X);
X4 = conv(X2,X2);
X8 = conv(X4,X4)
x p(x)
0.0.0000
10.0001
2.0011
3 0.0092
4 0.0459
50.1468
6 0.2936
7 0.3355
8 0.1678
```

2) Determine the probability distribution when tossing this same coin 8 times

- pdf
- mean
- standard deviation

$$
p d f=\binom{8}{m}(0.8)^{m}(0.2)^{8-m}
$$

Mean

$$
\mu=n p=8 \cdot 0.8=6.4
$$

Standard deviation

$$
\begin{aligned}
& \sigma^{2}=n p q \\
& \sigma^{2}=8 \cdot 0.8 \cdot 0.2=1.28 \\
& \sigma=\sqrt{1.28}=1.1314
\end{aligned}
$$

You can also solve using convolution in Matlab

$$
\begin{array}{ll}
\mathrm{m} 1=\operatorname{sum}\left(\mathrm{x} \cdot{ }^{*} \mathrm{x} 8\right) & \mu=\sum x \cdot p(x) \\
\mathrm{m} 1=6.4000 & \\
\mathrm{~s} 2=\operatorname{sum}\left((\mathrm{x}-\mathrm{m} 1) .^{\wedge} 2 .{ }^{*} \mathrm{x} 8\right) & \sigma^{2}=\sum(x-\mu)^{2} \cdot p(x) \\
\mathrm{s} 2= & 1.2800
\end{array}
$$

NOAA has been keeping track of world weather for the past 137 years. 9 of the last 10 years have been the hottest on record.

3a) What is the probability of any given year being one of the 10 hottest on record (i.e. what is p ?)

$$
p=\left(\frac{10}{137}\right)
$$

3b) What is the probability of 9 of the last 10 years being the hottest on record? (i.e. toss a coin and get 9 heads out of 10 tosses)

$$
\begin{aligned}
& f(9)=\binom{10}{9}\left(\frac{10}{137}\right)^{9}\left(\frac{127}{137}\right)^{1} \\
& f(9)=5.45 \cdot 10^{-10}
\end{aligned}
$$

$$
\mathrm{p}=0.000000000545
$$

There is a chance this is just random noise in the data. The odds against this are 1,834,011,061:1 against. It's still possible.

Uniform Distribution

Assume a fair six-sided die:

$$
Y(z)=\left(\frac{1}{6}\right)\left(\frac{z^{5}+z^{4}+z^{3}+z^{2}+z+1}{z^{6}}\right)=\left(\frac{1}{6}\right)\left(\left(\frac{1}{z}\right)+\left(\frac{1}{z^{2}}\right)+\left(\frac{1}{z^{3}}\right)+\left(\frac{1}{z^{4}}\right)+\left(\frac{1}{z^{5}}\right)+\left(\frac{1}{z^{6}}\right)\right)
$$

4) Asume you sum four dice (4d6). Determine the

- pdf
- mean, and
- standard deviation

The pdf for rolling four six-sided dice is

$$
p_{4}(z)=\left(\left(\frac{1}{6}\right)\left(\frac{z^{5}+z^{4}+z^{3}+z^{2}+z+1}{z^{6}}\right)\right)^{4}
$$

A second (less painful) solution is to use convolution in Matlab

```
d6 = [0,1,1,1,1,1,1]'/6;
d6x2 = conv(d6,d6);
d6x4 = conv(d6x2,d6x2);
```



```
x = [0:24]';
% mean
m1 = sum(d6x4 .* x)
% variance
s2 = sum((x-m1).^2 .* d6x4)
\sigma}=\sum(x-\mu\mp@subsup{)}{}{2}\cdotp(x
x = 14.0000
s2 = 11.6667
```

This compares to

$$
\begin{aligned}
& \mu=4 \cdot 3.5=14 \quad \text { check } \\
& \sigma^{2}=4 \cdot 2.9167=11.6666 \quad \text { check }
\end{aligned}
$$

5) Asume you sum sixteen dice (16d6). Determine the

- pdf
- mean, and
- standard deviation

In Matlab:

```
d6 = [0,1,1,1,1,1,1]' /6;
d6x2 = conv(d6,d6);
d6x4 = conv(d6x2,d6x2);
d6x8 = conv(d6x4,d6x4);
d6x16 = conv(d6x8,d6x8);
x = [0:6*16]';
% mean
m1 = sum(d6x16 .* x)
\mu=\sumx\cdotp(x)
% variance
s2 = sum((x-m1).^2 .* d6x16)
\sigma
x = 56.0000
s2 = 46.6667
```

This compares to

$$
\begin{aligned}
& \mu=16 \cdot 3.5=56 \\
& \sigma^{2}=16 \cdot 2.9167=46.6666
\end{aligned}
$$

