ECE 341 - Solutions to Homework \#5

(change) Geometric, Pascal. Due May 27th

Please make the subject "ECE 341 HW\#5" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Let

- A be the number of times you roll a 6 -sided die until you roll a 1
- B be the result of rolling a six-sided die.

What is the pdf of $\mathrm{A}+\mathrm{B}$? (hint: use colvolution)

This is the colvolution of a geometric distribution and a uniform distribution

$$
\begin{aligned}
& A(x)=\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{x-1} u(x-1) \\
& B(x)=\left\{0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

In matlab: In theory, x should go out to infinity. Go far enough so that the probability is approximately zero. After 30 terms, $\mathrm{A}(30)=0.0007$, which is close enough to zero to ignore all subsequent terms...

```
x = [0:30]';
A = (1/6) * (5/6).^ (x-1) .* (x>=1);
B = [0,1,1,1,1,1,1]/6;
Y = conv(A,B);
\begin{tabular}{lrl}
0 & 0 & \\
1 & 0 \\
2 & 0.0278 \\
3 & 0.0509 \\
4 & 0.0702 \\
5 & 0.0863
\end{tabular}\(\quad\) check: should get first non-zero term at \(x=2\)
```


2) Let

- A be the the number of times you roll a 6 sided die until you roll a 1 two times
- B be the sum of two 6 -sided dice

What is the pdf A + B? (hint: convolution again)
Use convolution in Matlab

```
A2 = conv(A,A);
B2 = conv(B,B);
Y = conv(A2,B2);
```


pdf for $\mathrm{Y}=\mathrm{A}+\mathrm{B}$
3) Let

- A be the number of times you roll a 6 -sided die until you roll a $1(p=1 / 6)$.
- B be the number of times you roll a 6 -sided die until you get a 1 or $2(p=1 / 3)$ What is the pdf of $\mathrm{A}+\mathrm{B}$ using convolution?

$$
\begin{aligned}
& A(x)=\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{x-1} u(x-1) \\
& B(x)=\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{x-1} u(x-1)
\end{aligned}
$$

```
x = [0:30]';
A = (1/6) * (5/6).^(x-1) .* (x>=1);
B = (1/3) * (2/3).^( }\textrm{x}-1)..* (x>=1)
Y = conv(A,B)
0
0
0.0556
0.0833
0.0941
0.0949
0.0901
0.0824
```


pdf for $\mathrm{Y}=\mathrm{A}+\mathrm{b}$
4) Let

- A be the number of times you roll a 6 -sided die until you roll a $1(p=1 / 6)$.
- B be the number of times you roll a 6 -sided die until you get a 1 or $2(p=1 / 3)$

What is the pdf of $\mathrm{A}+\mathrm{B}$ using z -transforms?

$$
\begin{aligned}
& A(z)=\left(\frac{1 / 6}{z-5 / 6}\right) \\
& B(z)=\left(\frac{1 / 3}{z-2 / 3}\right) \\
& Y(z)=A(z) B(z) \\
& Y(z)=\left(\frac{1 / 6}{z-5 / 6}\right)\left(\frac{1 / 3}{z-2 / 3}\right)
\end{aligned}
$$

Use partial fractions

$$
Y(z)=\left(\frac{0.3333}{z-5 / 6}\right)+\left(\frac{-0.3333}{z-2 / 3}\right)
$$

To match terms in my table of z-transforms, multiply by z

$$
z Y=\left(\frac{0.3333 z}{z-5 / 6}\right)+\left(\frac{-0.3333 z}{z-2 / 3}\right)
$$

Take the inverse z-transform

$$
z y(x)=\left(0.3333\left(\frac{5}{6}\right)^{x}-0.3333\left(\frac{2}{3}\right)^{x}\right) u(x)
$$

Divide by z (delay one)

$$
y(x)=\left(0.3333\left(\frac{5}{6}\right)^{x-1}-0.3333\left(\frac{2}{3}\right)^{x-1}\right) u(x-1)
$$

This matches the results from problem \#3

$$
\begin{aligned}
& Y 4=(0.33333 *(5 / 6) . \wedge(x-1)-0.33333 *(2 / 3) . \wedge(x-1)) \cdot *(x>=1) ; \\
& {[x(1: 10), Y(1: 10), Y 4(1: 10)]}
\end{aligned}
$$

