ECE 341 - Homework \#7

Uniform and Exponential Distributions. Due Monday, June 1st
Please make the subject "ECE $341 \mathrm{HW} \# 7$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Uniform Distributions

Let

- a be a sample from A, a uniform distribution over the range of $(0,1)$
- b be a sample from B, a uniform distribution over the range of $(0,6)$
- c be a sample from C, a uniform distribution over the range of $(0,10)$

1) Determine the pdf for $\mathrm{a}+\mathrm{b}$ using moment generating funcitons (i.e. LaPlace transforms)

$$
\begin{aligned}
& A(s)=\left(\frac{1}{s}\right)\left(1-e^{-s}\right) \\
& B(s)=\left(\frac{1}{6 s}\right)\left(1-e^{-6 s}\right) \\
& Y=A B=\left(\left(\frac{1}{s}\right)\left(1-e^{-s}\right)\right)\left(\left(\frac{1}{6 s}\right)\left(1-e^{-6 s}\right)\right) \\
& Y=\left(\frac{1}{6 s^{2}}\right)\left(1-e^{-s}\right)\left(1-e^{-6 s}\right) \\
& Y=\left(\frac{1}{6 s^{2}}\right)\left(1-e^{-s}-e^{-6 s}+e^{-7 s}\right)
\end{aligned}
$$

Take the inverse LaPlace trasform

$$
y(t)=\left(\frac{1}{6}\right)(t u(t)-(t-1) u(t-1)-(t-6) u(t-6)+(t-7) u(t-7))
$$

This is a trapezoid:

2) Determine the pdf for $a+b$ using convolution (by hand or Matlab)

```
t = [0:0.01:10]';
A = 1 * (t<=1);
B = 1/6 * (t <= 6);
dt = 0.01;
Y = conv (A,B)*dt;
ty = [0:length(Y)-1]' * dt;
plot(ty,Y)
xlim([0,10])
```


which is the same as we got in problem \#1
3) Assume each resistor has a tolerance of 5% (i.e. a uniform distribution over the range of $(0.95,1.05)$ of the nominal value. Determine the mean and standard deviation for the voltage at Y for the following circuit.

Write the node equations

$$
\begin{aligned}
& V_{3}=V_{4} \\
& \left(\frac{V_{1}-10}{R_{1}}\right)+\left(\frac{V_{1}}{R_{2}}\right)+\left(\frac{V_{1}-V_{3}}{R_{3}}\right)=0 \\
& \left(\frac{V_{2}-10}{R_{5}}\right)+\left(\frac{V_{2}}{R_{6}}\right)+\left(\frac{V_{2}-V_{4}}{R_{7}}\right)=0 \\
& \left(\frac{V_{3}-V_{1}}{R_{3}}\right)+\left(\frac{V_{3}}{R_{4}}\right)=0 \\
& \left(\frac{V_{4}-V_{2}}{R_{7}}\right)+\left(\frac{V_{4}-V_{5}}{R_{8}}\right)=0
\end{aligned}
$$

Group terms and place in matrix form

$$
\left[\begin{array}{ccccc}
0 & 0 & 1 & -1 & 0 \\
\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) & 0 & \left(\frac{-1}{R_{3}}\right) & 0 & 0 \\
0 & \left(\frac{1}{R_{5}}+\frac{1}{R_{6}}+\frac{1}{R_{7}}\right) & 0 & \left(\frac{-1}{R_{7}}\right) & 0 \\
\left(\frac{-1}{R_{3}}\right) & 0 & \left(\frac{1}{R_{3}}+\frac{1}{R_{4}}\right) & 0 & 0 \\
0 & \left(\frac{-1}{R_{7}}\right) & 0 & \left(\frac{1}{R_{7}}+\frac{1}{R_{8}}\right) & \left(\frac{-1}{R_{8}}\right)
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\left(\frac{10}{R_{1}}\right) \\
\left(\frac{10}{R_{5}}\right) \\
0 \\
0
\end{array}\right]
$$

Pick random values for R and solve for V5

Use the nominal values and check agains CircuitLab

```
% Homework #7 problem #3
R1 = 1000 * (1 + 0.0* (2*rand-1));
R2 = 600 * (1 + 0.0* (2*rand-1));
R3 = 1000 * (1 + 0.0*(2*rand-1));
R4 = 3000 * (1 + 0.0* (2*rand-1));
R5 = 1000 * (1 + 0.0* (2*rand-1));
R6 = 500 * (1 + 0.0* (2*rand-1));
R7 = 1000 * (1 + 0.0*(2*rand-1));
R8 = 3000 * (1 + 0.0*(2*rand-1));
a1 = [0,0,1,-1,0];
a2 = [1/R1+1/R2+1/R3,0,-1/R3,0,0];
a3 = [0,1/R5+1/R6+1/R7,0,-1/R7,0];
a4 = [-1/R3,0,1/R3+1/R4,0,0];
a5 = [0,-1/R7,0,1/R7+1/R8,-1/R8];
A = [a1;a2;a3;a4;a5];
B = [0;10/R1;10/R5;0;0];
V = inv(A)*B
    3.4286
    3.1429
    2.5714
    2.5714
    0.8571
```

This matches CircuitLab, so it looks like the equations are correct. Change the percentages to 5\% and run 1000 times

```
p = [1:1000]' / 1000;
plot(V5,p)
xlabel('V5');
```


cdf for V5

This gives the cdf. To determine the pdf, you could use a Weibull distribution (see homework \#9)

The mean and standard deviation are

```
mean(V5)
ans=0.8637
std(V5)
ans=0.3188
```


Exponential Distributions

Let

- d be a sample from D, an exponential distribution with a mean of 5
- e be a sample from E, an exponential distribution with a mean of 10
- f be a sample from F, an exponential distribution with a mean of 15

4) Use moment generating functions to determine the pdf for $d+d+d$ (i.e. the time for three events to be observed in D)

$$
\begin{aligned}
& d(t)=0.2 e^{-0.2 t} u(t) \\
& D(s)=\left(\frac{0.2}{s+0.2}\right) \\
& y(t)=d(t) * * d(t) * * d(t) \\
& Y(s)=D(s) \cdot D(s) \cdot D(s) \\
& Y(s)=\left(\frac{0.2^{3}}{(s+0.2)^{3}}\right)
\end{aligned}
$$

From the table of LaPlace transforms

$$
\begin{aligned}
& \left(\frac{2}{(s+b)^{3}}\right) \rightarrow t^{2} e^{-b t} u(t) \\
& Y(s)=\left(\frac{0.2^{3}}{2}\right)\left(\frac{2}{(s+0.2)^{3}}\right) \\
& y(t)=\left(\frac{0.2^{3}}{2}\right) t^{2} e^{-0.2 t} u(t)
\end{aligned}
$$

5) Use moment generating functions to determine the pdf for the sum: $d+e+f$ (i.e. the time for one event from D, E, and F)

$$
\begin{aligned}
& D(s)=\left(\frac{0.2}{s+0.2}\right) \\
& E(s)=\left(\frac{0.1}{s+0.1}\right) \\
& F(s)=\left(\frac{0.0667}{s+0.0667}\right) \\
& Y=\left(\frac{0.2}{s+0.2}\right)\left(\frac{0.1}{s+0.1}\right)\left(\frac{0.0667}{s+0.0667}\right)
\end{aligned}
$$

Expand using partial fractions

$$
Y=\left(\frac{0.1}{s+0.2}\right)+\left(\frac{-0.4}{s+0.1}\right)+\left(\frac{0.3}{s+0.0667}\right)
$$

Take the inverse LaPlace transform

$$
y(t)=\left(0.1 e^{-0.2 t}-0.4 e^{-0.1 t}+0.3 e^{-0.0667 t}\right) u(t)
$$

