ECE 341 - Homework \#11

Markov Chains. Due Monday, June 8th

Please make the subject "ECE 341 HW\#11" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Problem $1 \& 2$) Two teams, A and B, are playing a match made up of N games. For each game

- Team A has a 50% chance of winning
- There is a 20% chance of a tie, and
- Team B has a 30% chance of winning

In order to win the match, a team must be up by 2 games.

1) Determine the probabilty that team A wins the match after k games for $\mathrm{k}=\{0 \ldots 10\}$ using matrix multiplication.
First set up the state transistion matrix

$$
z\left[\begin{array}{c}
p 2 \\
p 1 \\
e \\
m 1 \\
m 2
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0.5 & 0 & 0 & 0 \\
0 & 0.2 & 0.5 & 0 & 0 \\
0 & 0.3 & 0.2 & 0.5 & 0 \\
0 & 0 & 0.3 & 0.2 & 0 \\
0 & 0 & 0 & 0.3 & 1
\end{array}\right]\left[\begin{array}{c}
p 2 \\
p 1 \\
e \\
m 1 \\
m 2
\end{array}\right]
$$

Raise the state transistion matrix to a large power (say, 100 games)
$A^{\wedge} 100$

1.0000	0.9007	0.7353	0.4596	0
0	0.0000	0.0000	0.0000	0
0	0.0000	0.0000	0.0000	0
0	0.0000	0.0000	0.0000	0
0	0.0993	0.2647	0.5404	1.0000

Assuming you start out at even, A has a 73.53% chance of winning the match.
2) Determine the z-transform for the probability that A wins the match after k games

- From the z transforms, determine the explicit function for $\mathrm{p}(\mathrm{A})$ wins after game k .

$$
\begin{aligned}
& z X=\left[\begin{array}{ccccc}
1 & 0.5 & 0 & 0 & 0 \\
0 & 0.2 & 0.5 & 0 & 0 \\
0 & 0.3 & 0.2 & 0.5 & 0 \\
0 & 0 & 0.3 & 0.2 & 0 \\
0 & 0 & 0 & 0.3 & 1
\end{array}\right] X \quad X(0)=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right] \\
& Y=A_{\text {wins }}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] X \\
& \mathrm{x} 0=[0 ; 0 ; 1 ; 0 ; 0] \\
& 0 \\
& 0 \\
& \begin{array}{l}
1 \\
0
\end{array} \\
& 0 \\
& C=[1,0,0,0,0] \\
& \begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array} \\
& \mathrm{G}=\mathrm{ss}(\mathrm{~A}, \mathrm{X} 0, \mathrm{C}, 0,1) \text {; } \\
& \text { zpk(G) } \\
& 0.25(z-0.2) \\
& (z-1)(z-0.7477)(z-0.2)(z+0.3477) \\
& \text { Sampling time (seconds): } 1
\end{aligned}
$$

Multiply by z to get the z -transform for A winnings

$$
Y(z)=\left(\frac{0.25}{(z-1)(z-0.7477)(z+0.3477)}\right) z
$$

A property of z -transforms is
The delay is the difference in order from the denominator to the numerator

Multiply by $z^{\wedge} 2$ (not necessary but simplifies the answer)

$$
z^{2} Y=\left(\frac{0.25 z^{3}}{(z-1)(z-0.7477)(z+0.3477)}\right)
$$

Factor out a z

$$
z^{2} Y=\left(\frac{0.25 z^{2}}{(z-1)(z-0.7477)(z+0.3477)}\right) z
$$

Do partial fractions

$$
\begin{aligned}
& z^{2} Y=\left(\left(\frac{0.7352}{z-1}\right)+\left(\frac{-0.5057}{z-0.7477}\right)+\left(\frac{0.0205}{z+0.3477}\right)\right) z \\
& z^{2} Y=\left(\frac{0.7352 z}{z-1}\right)+\left(\frac{-0.5057 z}{z-0.7477}\right)+\left(\frac{0.0205 z}{z+0.3477}\right)
\end{aligned}
$$

Take the inverse z-transform

$$
z^{2} y(k)=\left(0.7352-0.5057(0.7477)^{k}+0.0205(-0.3477)^{k}\right) u(k)
$$

Divide by $\mathrm{z}^{\wedge} 2$ (meaning delay 2 samples)

$$
y(k)=\left(0.7352-0.5057(0.7477)^{k-2}+0.0205(-0.3477)^{k-2}\right) u(k-2)
$$

3) Two players are playing a game of tennis. To win a game, a player must win 4 points and be up by 2 points.

- If player A reaches 4 points and player B has less than 3 points, the game is over and player A wins.
- If player A reaches 4 points and player B has 3 points, then the game reverts to 'win by 2 ' rules. Both players keep playing until one of them is up by 2 games.

Supppose:

- Player A has a 60% chance of winning any given point
- Player B has a 40% chance of winning any given point.

What is the probabilty that player A wins the game (first to 4 games, win by 2)?

- Note: This is a combination of a binomial distribution (A has 4 points while B has 0,1 , or 2 points) along with a Markov chain (A and B both have 3 points, at which point it becomes a win-by-2 series)

The ways A can win are (A always has to win the last game)
a) 4-0 A wins after being up 3-0
b) 4-1 A wins after being up 3-1
c) 4-2 A wins after being up 3-2
d) 3-3 and A wins the Markov chain

The odds are
a) 4-0: This is a binomial problem

$$
X_{a}=\left(\binom{3}{3} p^{3} q^{0}\right) \cdot p=0.1296
$$

b) 4-1: Again a binomial (3-1 followed by A winning)

$$
X_{b}=\left(\binom{4}{3} p^{3} q^{1}\right) \cdot p=0.2047
$$

c) 4-2: A us up (3-2) then wins

$$
X_{c}=\left(\binom{5}{3} p^{3} q^{2}\right) \cdot p=0.2047
$$

d) 3-3: Ending up at duce:

$$
X_{d}=\left(\binom{6}{3} p^{3} q^{3}\right)=0.2765
$$

The chance of A winning after being at duce is the solution to a Markov chain:

$$
\begin{aligned}
& y(k+1)=\left[\begin{array}{ccccc}
1 & 0.6 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 0 & 0 \\
0 & 0.4 & 0 & 0.6 & 0 \\
0 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0.4 & 0
\end{array}\right] y(k) \\
& A=[1,0,0,0,0 ; 0.6,0,0.4,0,0 ; 0,0.6,0,0.4,0 ; 0,0,0.6,0,0.4 ; 0,0,0,0,1]{ }^{\prime}
\end{aligned}
$$

A^100

1.0000	0.8769	0.6923	0.4154	0
0	0.0000	0	0.0000	0
0	0	0.0000	0	0
0	0.0000	0	0.0000	0
0	0.1231	0.3077	0.5846	1.0000

A has a 69.23% chance of winning if you start at duce.
Doing a conditional probability

$$
\begin{aligned}
& X_{d}=p(\mathrm{~A} \text { winning } \mid \text { duce }) p(\text { duce }) \\
& X_{d}=0.6923 \cdot 0.2765 \\
& X_{d}=0.1914
\end{aligned}
$$

The odds of A winning a game of tennis is then

$$
\begin{aligned}
& X=X_{a}+X_{b}+X_{c}+X_{d} \\
& X=0.7357
\end{aligned}
$$

Player A has a $\mathbf{7 3 . 5 7 \%}$ chance of winning the game

