ECE 341 - Homework \#12

Markov Chains and Corona Virus. Due Tuesday, June 9th

Please make the subject "ECE 341 HW\#12" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Simulate a disease outbreak.
Assume there are four groups of people

- Healthy: not infected yet but can be infected
- Carrier: infeted and can transmit the disease
- Cured: infected and cannot catch the disease again and cannot transmit the disease
- Dead: Cannot catch the disease and cannot transmit the disease

Assume that each person who is a carrier interracts with N other people each day (k).

- The person is selected at random from all people still alive
- If a carrier interracts with a healthy person, the person has an $X \%$ chance of being infected New Infections $=(\#$ infected $)(N)\left(\frac{\text { \#healthy }}{\text { total population }}\right)(X)$

Also assume that each person who is infected has a

- 3% chance of beinc cured (30 day incubation time on average)
- 0.1% chance of dieing

Assume the initial condition is

- 990 healthy people
- 10 carriers
- 0 cured
- 0 dead

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { Healthy }(k+1) \\
\operatorname{Carrier}(k+1) \\
\operatorname{Cured}(k+1) \\
\operatorname{Dead}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
1-a & 0 & 0 & 0 \\
a & 1-0.03-0.001 & 0 & 0 \\
0 & 0.03 & 1 & 0 \\
0 & 0.001 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\operatorname{Healthy}(k) \\
\operatorname{Carrier}(k) \\
\operatorname{Cured}(k) \\
\operatorname{Dead}(k)
\end{array}\right]} \\
& a=(\# \text { carriers })(N)(p)\left(\frac{1}{\text { Healthy+Carriers+Cured }}\right)
\end{aligned}
$$

1) Simulate the disease spread for 300 days if

- $\mathrm{N}=3$ (each person is in close contact with 3 people each day)
- $X=6 \%$ (6% chance of the catching if exposed)

Result after 300 days

- \# healthy 2.2743
- \# infected 0.2760
- \# cured 965.2738
- \# dead 32.1758

Peak is at 50 days with 538 infected

2) Simulate the effect of self isolation:

- $\mathrm{N}=1$ (each person interracts with $1 / 3$ rd as many people each day)
- $X=6 \%$ (6% chance of the catching if exposed)

Result after 300 days

- \# healthy 228
- \# infected 25
- \# cured 721
- \# dead 24

Peak is at 150 days with 150 infected

3) Simulate the effect of social distancing and wearing masks:

- $\mathrm{N}=3$ (each person interracts with 10 people each day)
- $\mathrm{X}=2 \%$ (chance of being infected is $1 / 3$ rd what it was before)

Result after 300 days

- \# healthy 228
- \# infected 25
- \# cured 721
- \# dead 24

Peak is at 150 days with 150 infected

Simulation Results with $\mathrm{Np}=0.2$: Healthy (blue), Infected (green), Cured (red), \& Dead (cyan)
4) Simulate the effect of both social distancing and wearing masks:

- $\mathrm{N}=1$ (each person interracts with 2 people each day)
- $\mathrm{X}=2 \%$ (2 chance of being infected is $1 / 3$ rd what is was before)

Result after 300 days

- \# healthy 973.2
- \# infected 0.3
- \# cured 25.5
- \# dead 0.9

Peak is at 0 days with 10 infected

