ECE 341 - Homework \#13

t -Tests. Due Wednesday, June 10th
Please make the subject "ECE 341 HW\#13" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Test of a Single Population: Full-House in Draw Poker

The calculated odds of a full house in 5 -card draw are $\mathrm{p}=0.013245$. Verify whether this is / is not correct with a probability of 90%

1) Run a Monte Carlo simulation to determine the odds of getting a full-house in 5-card draw

- Each simulation goes through 10,000 hands (\# of full houses in 1,000 hands of poker)
- Run the simulation 5 times
- data $=\{x 1, x 2, x 3, x 4, x 5\}$

From this, determine the 90% confidence interval for the actual odds of getting a full-house with 5-card draw.

- if $\mathrm{p}=0.013245$ is in this interval, you cannot reject this answer with a probability of 90%

Data: Calculations from Test \#1 did not account for flushes or straights. Doing likewise with a MonteCarlo simulation results in...

4-of-kind	full house	3-of-kind	2-pair	pair
26	111	794	1327	5221
17	142	743	1455	5124
31	130	791	1371	5124
20	116	768	1326	5190
28	115	758	1352	5241

```
FH = [111,142,130,116,115]
FH = 111 142 130 116 115
x = mean(FH)/100
x = 1.2280%
s = std(FH)/100 / sqrt(5)
s = 0.0577%
[x - 2.132*s, x + 2.132*s]
    1.1049% 1.3511%
```

The computed odds are within the 90% confidence interval for getting a full house (no flushes)

2) The height three people can jump is recorded (units $=$ meters)

$$
\begin{array}{lllllllll}
\text { A }: & 0.413, & 0.370, & 0.345, & 0.328, & 0.424, & 0.276, & 0.494, & 0.306,
\end{array} 0.419,0.405
$$

What is the 90% confidence interval for A? (two tails)
From StatTrek, the t-score corresponding to 5% tails and 9 degrees of freedom is

```
        t=1.833
A = [0.413, 0.370, 0.345, 0.328, 0.424, 0.276, 0.494, 0.306, 0.419, 0.405];
x = mean(A)
x = 0.3780
s = std(A)
s = 0.0654
[x - 1.833*s, x + 1.833*s]
    0.2582 0.4978
```

It is $\mathbf{9 0 \%}$ likely that A 's jump will in in the interval $(\mathbf{0} .2582,0.4978)$ meters

What is minimum height A will jump 90% of the time? (one tail)
From StatTrek, the t-score corresponding to 10% tails and 9 degrees of freedom is

$$
\begin{gathered}
\mathrm{t}=1.383 \\
\mathrm{x}-1.383 * \mathrm{~s} \\
\mathrm{ans}=0.2876
\end{gathered}
$$

It is $\mathbf{9 0 \%}$ likely that A 's jump will be at least $\mathbf{0 . 2 8 7 6}$ meters

90\% Confidence Intervals for A's jump: 2-Sided (red) and One-Sided (green)

Test of Two Populations

3) For the data set in problem \#2:
```
A: 0.413, 0.370, 0.345, 0.328, 0.424, 0.276, 0.494, 0.306, 0.419, 0.405
B: 0.390, 0.411, 0.543, 0.370, 0.425, 0.387, 0.556, 0.557, 0.603, 0.497
C: 0.649, 0.605, 0.628, 0.603, 0.645, 0.593, 0.637, 0.687, 0.635, 0.687
```

What is the probability that A will jump higher then B the next time they jump?

```
A = [0.413, 0.370, 0.345, 0.328, 0.424, 0.276, 0.494, 0.306, 0.419, 0.405];
B = [0.390, 0.411, 0.543, 0.370, 0.425, 0.387, 0.556, 0.557, 0.603, 0.497];
```

Let $\mathrm{W}=\mathrm{A}-\mathrm{B}$

```
Xw = mean(A) - mean(B)
    = -0.0959
Sw = sqrt( var(A) + var(B) )
    = 0.1084
t = ( Xw - 0 ) / Sw
t = -0.8845
```

From stat-trek, this corresponds to a probability of 0.1997
There is a $\mathbf{1 9 . 9 7 \%}$ chance that A will jump higher than B next jump

pdf of $W=A-B$. The area to the right of zero is the probabililty that $A>B$

What is the probability that B's average is larger than A's average?

Let $\mathrm{W}=\mathrm{A}-\mathrm{B}$

```
Xw = mean(A) - mean(B)
    = -0.0959
Sw = sqrt( var(A)/10 + var(B)/10 )
    = 0.0343
t = Xw / Sw
t = -2.7970
```

From stat-trek, this corresponds to a probability of 0.0104
There is a $\mathbf{1 . 0 4 \%}$ chance that A's average is larger than B's.
There is a $\mathbf{9 8 . 9 6 \%}$ chance that B 's average is larger than A's.

pdf for $\mathrm{W}=$ mean $(\mathrm{A})-$ mean (B), The area to the right of zero is the probability that $\mathrm{A}>\mathrm{B}$

The reflex time of a person before and after drinking 2 shots is measured

Trial	Person A		Person B		Person C	
	sober	2 drinks	sober	2 drinks	sober	2 drinks
$\# 1$	0.2253	0.2559	0.1924	0.2721	0.2419	0.3012
$\# 2$	0.1923	0.3488	0.1893	0.2197	0.1976	0.2556
$\# 3$	0.1854	0.244	0.2081	0.2438	0.3063	0.2451

4) What is the probability that A has a faster reaction time then B ?

Option 1: Consider sober vs. sober

- good: consistent experiment should give a lower variance (easier to see small differences)
- bad: ignores half of the data

$$
\begin{aligned}
& A=[0.2253,0.1923,0.1854] ; \\
& B=[0.1924,0.1893,0.2018] ;
\end{aligned}
$$

Let $\mathrm{W}=\mathrm{A}-\mathrm{B}$

```
Xw = mean(A) - mean(B)
    = 0.0065
Sw = sqrt( var(A)/3 + var(B)/3 )
    = 0.0129
t = Xw / Sw
t = 0.5049
```

From StatTrek, this corresponds to a probabiity of 0.6681

It is $\mathbf{6 6 . 8 1 \%}$ likely that A has a larger (worse) reaction time than B

Option 2: Use all of the data (sober and 2 drinks)

- good: uses all of the data
- bad: mixes experiment, resulting in larger variations

```
A = [0.2253,0.1923,0.1854,0.2559,0.3488,0.244];
B = [0.1924,0.1893,0.2018,0.2721,0.2197,0.2438];
Xw = mean(A) - mean(B)
    = 0.0221
Sw = sqrt( var(A)/6 + var(B)/6 )
    = 0.0276
t = Xw / Sw
t = 0.8004
```

From StatTrek, this corresponds to a probabiity of 0.7730
It is $\mathbf{7 7 . 3 0 \%}$ likely that \mathbf{A} has a larger (worse) reaction time than B

pdf of $\mathrm{W}=\mathrm{A}-\mathrm{B}$. Area to the right is the probability that $\mathrm{A}>\mathrm{B}$
5) What is the probability that your reaction time after drinking 2 shots increases?

Trial	Person A		Person B		Person C	
	sober	2 drinks	sober	2 drinks	sober	2 drinks
\#1	0.2253	0.2559	0.1924	0.2721	0.2419	0.3012
\#2	0.1923	0.3488	0.1893	0.2197	0.1976	0.2556
\#3	0.1854	0.244	0.2081	0.2438	0.3063	0.2451

Option \#1: Group all sober and 2-drings together

- goood: uses all the data
- bad: increased variation due to different people in each group

```
sober = [0.2253,0.1923,0.1854,0.1924,0.1893,0.2018,0.2419,0.1976,0.3063]
drink2 = [0.2559,0.3488,0.244,0.2721,0.2197,0.2438,0.3013,0.2556,0.2451]
Xw = mean(drink2) - mean(sober)
    = 0.0504
Sw = sqrt(var(drink2)/9 + var(sober)/9)
    = 0.0183
t = Xw / Sw
t = 2.7570
```

From StatTrek, this gives $\mathrm{p}=0.9889$

It is $\mathbf{9 8 . 8 9 \%}$ likely that your reaction time increases after $\mathbf{2}$ drinks

pdf of $\mathrm{W}=$ sober -2 drinks. The area to the right is the probability that sober >2 drinks (slower reflex)
6) Hector airport has been recording weather in Fargo since 1942.
http://www.bisonacademy.com/ECE111/Code/Fargo_Weather_Monthly_Avg.txt
Determine the probability that (April, 2000-2020) is warmer than (April, 1942-1962)
April 2020 was 39.649 F (average)
https://ndawn.ndsu.nodak.edu/station-info.html?station=23

```
April = DATA(:,5);
size(April)
ans =
    78 1
April = [April;39.649];
X = April(1:21);
Y = April(59:79);
Xw = mean(Y) - mean(X)
    = 1.2452
Sw = sqrt( var(Y)/21 + var(X)/21 )
    = 1.3964
t = Xw / Sw
t = 0.8917
```

From StatTrek, this corresponds to a t-score of 0.8084
It is $\mathbf{8 0 . 8 4 \%}$ likely that the last $\mathbf{2 1}$ years were warmer than $\mathbf{6 0}$ years ago

pdf of W = (2020-2000) - (1942-1962)
Area to the right of zero is the probability that it got warmer

