ECE 341 - Homework \#15

F-Test and ANOVA. Due Friday, June 12th
Please make the subject "ECE 341 HW\#15" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Test of a 3+ Populations

1) The temperature drop of 3 different mugs over 15 minutes when filled with boiling water is measured

- A: Mean $=2.43$ Standard Deviation $=0.0155, \mathrm{Na}=3$ (sample size)
- B: Mean $=2.50$ Standard Deviation $=0.06557, \mathrm{Nb}=3$ (sample size)
- C: Mean $=2.73$ Standard Deviation $=0.08145, \mathrm{Nc}=3$ (sample size)

Determine if the means are the same using an ANOVA test.

Determine the global mean

$$
\begin{aligned}
& \bar{G}=\left(\frac{1}{N}\right)\left(n_{a} \bar{A}+n_{b} \bar{B}+n_{c} \bar{C}\right) \\
& \bar{G}=2.5533
\end{aligned}
$$

Determine MSSb and MSSw
MSSb:

$$
\begin{aligned}
& M S S_{b}=\left(\frac{1}{k-1}\right)\left(n_{a}(\bar{A}-\bar{G})^{2}+n_{b}(\bar{B}-\bar{G})^{2}+n_{c}(\bar{C}-\bar{G})^{2}\right) \\
& M S S_{w}=\left(\frac{1}{N-k}\right)\left(\left(n_{a}-1\right) s_{a}^{2}+\left(n_{b}-1\right) s_{b}^{2}+\left(n_{c}-1\right) s_{c}^{2}\right)
\end{aligned}
$$

```
xa = 2.43;
Sa = 0.0155;
xb = 2.50;
Sb = 0.06557;
Xc = 2.73;
Sc = 0.0815;
Na = 3;
Nb = 3;
Nc = 3;
k = 3;
N = Na + Nb + NC
N = 9
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
G = 2.5533
MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + NC*(XC-G)^2) / (k-1)
MSSb = 0.0739
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*SC^2) / (N-k)
MSSw = 0.0037
F = MSSb / MSSw
F = 19.8266
```

You can also get the same answer with an ANOVA table

A	B	C	A	B	C
			$\begin{aligned} & 0.0155 \\ & \operatorname{std}(A) \end{aligned}$	$\begin{gathered} 0.06557 \\ \operatorname{std}(\mathrm{~B}) \end{gathered}$	$\begin{gathered} 0.08145 \\ \operatorname{std}(C) \end{gathered}$
$\mathrm{Na}=3$	$\mathrm{Nb}=3$	$\mathrm{Nc}=3$	$\begin{gathered} 0.0004805 \\ \text { sum of squares } \end{gathered}$	$\begin{gathered} 0.0086 \\ \text { sum of squares } \end{gathered}$	$\begin{gathered} 0.0133 \\ \text { sum of squres } \end{gathered}$
$N=9$			$\begin{gathered} 0.0223 \\ \text { sum of squares } \end{gathered}$		
$\begin{gathered} 2.43 \\ \operatorname{mean}(\mathrm{~A}) \end{gathered}$	$\begin{gathered} 2.50 \\ \text { mean(B) } \end{gathered}$	$\begin{gathered} 2.73 \\ \text { mean(C) } \end{gathered}$	MSSw $=0.0037$		
$\begin{gathered} 2.5533 \\ \mathrm{G}=\text { global mean } \end{gathered}$					
$\begin{gathered} 0.0456 \\ \mathrm{Na}(\mathrm{~A}-\mathrm{G})^{2} \end{gathered}$	$\begin{gathered} 0.0085 \\ \mathrm{Nb}(B-G)^{2} \end{gathered}$	$\begin{gathered} 0.0936 \\ \mathrm{Nc}(\mathrm{C}-\mathrm{G})^{2} \end{gathered}$			
0.1478 sum of squres					
$\mathrm{MSSb}=0.0739$					

Now use an F table with

- numerator $=2$ degrees of freedom ($\mathrm{k}-1$)
- denominator $=6$ degrees of freedom $(\mathrm{N}-\mathrm{k})$

This corresponds to a probability of 99.8%

I am $\mathbf{9 9 . 8 \%}$ certain that the three data sets have a different mean

You'd have to do 1 on 1 t -tests to determine which one (or more) is the outlier.

- Enter values for degrees of freedom.
- Enter a value for one, and only one, of the remaining text boxes.
- Click the Calculate button to compute a value for the blank text box.

Degrees of freedom (v_{1})	2
Degrees of freedom (v_{2})	6
Cumulative prob: $P(F \leq 19.8266)$	0.998
f value	19.8266

2) The height three people can jump is recorded (units $=$ meters)

| A: | 0.413, | 0.370, | 0.345, | 0.328, | 0.424, | 0.276, | 0.494, | 0.306, | 0.419, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.405

Determine if the means are the same using an ANOVA test.

```
A = [0.413, 0.370, 0.345, 0.328, 0.424, 0.276, 0.494, 0.306, 0.419, 0.405];
B = [0.390, 0.411, 0.543, 0.370, 0.425, 0.387, 0.556, 0.557, 0.603, 0.497];
C = [0.649, 0.605, 0.628, 0.603, 0.645, 0.593, 0.637, 0.687, 0.635, 0.687];
Xa = mean(A)
Xa=0.3780
X.b = mean(B)
Xb = 0.4739
Xc = mean(C)
Xc = 0.6369
Na = length(A);
Nb = length(B);
Nc = length(C);
G = mean([A;B;C])
G = mean([A,B,C])
G = 0.4963
k = 3;
N = Na + Nb + Nc
N = 30
MSSb = (Na* (Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSb = 0.1713
MSSw = ((Na-1)*var(A) + (Nb-1)*var(B) + (Nc-1)*var(C)) / (N-k)
MSSw = 0.0043
F = MSSb / MSSw
F = 40.1502
```

From StatTrek, this corresponds to a probabilit of 0.9999999

I am $\mathbf{9 9 . 9 9 9 9 \%}$ certain that the three population means are not the same

Repeat with an ANOVA table

A	B	C	(A - mean(A) $)^{\wedge} 2$	(B-mean(B))^2	(C - mean(C) $)^{\wedge} 2$
0.413	0.39	0.649	0.0012	0.0070	0.0001
0.37	0.411	0.605	0.0001	0.0040	0.0010
0.345	0.543	0.628	0.0011	0.0048	0.0001
0.328	0.37	0.603	0.0025	0.0108	0.0011
0.424	0.425	0.645	0.0021	0.0024	0.0001
0.276	0.387	0.593	0.0104	0.0076	0.0019
0.494	0.556	0.637	0.0135	0.0067	0.0000
0.306	0.557	0.687	0.0052	0.0069	0.0025
0.419	0.603	0.635	0.0017	0.0167	0.0000
0.405	0.497	0.687	0.0007	0.0005	0.0025
$\mathrm{Na}=10$	$\mathrm{Nb}=10$	$\mathrm{Nc}=10$	SSa $=0.0384$	$\mathrm{SSb}=0.0674$	SSc $=0.0094$
$\mathrm{N}=30$				$\text { SSw }=0.1152$ Sum of squares	
$\begin{gathered} 0.3780 \\ \operatorname{mean}(A) \end{gathered}$	$\begin{gathered} 0.4739 \\ \operatorname{mean}(\mathrm{~B}) \end{gathered}$	$\begin{gathered} 0.6369 \\ \operatorname{mean}(\mathrm{C}) \end{gathered}$		MSSw $=0.0043$	
$\begin{gathered} 0.4963 \\ \mathrm{G}=\text { global mean } \end{gathered}$					
$\begin{gathered} 0.1399 \\ \mathrm{Na}(\mathrm{~A}-\mathrm{G})^{2} \end{gathered}$	$\begin{gathered} 0.0050 \\ \mathrm{Nb}(B-G)^{2} \end{gathered}$	$\begin{gathered} 0.1978 \\ \mathrm{Nc}(\mathrm{C}-\mathrm{G})^{2} \end{gathered}$			
$\begin{gathered} 0.3426 \\ \text { sum of squres } \end{gathered}$					
$\mathrm{MSSb}=0.1713$					

- Enter values for degrees of freedom.
- Enter a value for one, and only one, of the remaining text boxes.
- Click the Calculate button to compute a value for the blank text box.

Degrees of freedom $\left(v_{1}\right)$	2
Degrees of freedom $\left(v_{2}\right)$	27
Cumulative prob:	0.999999991865805
$\mathrm{P}(\mathrm{F} \leq 40.15)$	
f value	$\square 40.15$

The reflex time of a person before and after drinking 2 shots is measured

Trial	Person A		Person B		Person C	
	sober	2 drinks	sober	2 drinks	sober	2 drinks
$\# 1$	0.2253	0.2559	0.1924	0.2721	0.2419	0.3012
$\# 2$	0.1923	0.3488	0.1893	0.2197	0.1976	0.2556
$\# 3$	0.1854	0.244	0.2081	0.2438	0.3063	0.2451

3) Determine if the means are the same for all six populations: Persons A, B, and C, sober and after 2 drinks.

Sober

```
% Sober
A = [0.2253, 0.1923, 0.1854];
B = [0.1924, 0.1893, 0.2081];
C = [0.2419, 0.1976, 0.3063];
% 2 drinks
D = [0.2559, 0.3488, 0.2440];
E = [0.2721, 0.2197, 0.2438];
F = [0.3012, 0.2556, 0.2451];
Na = length(A);
Nb = length(B);
Nc = length(C);
Nd = length(D);
Ne = length(E);
Nf = length(F);
Xa = mean(A);
Xb = mean(B);
Xc = mean(C);
Xd = mean(D);
Xe = mean(E);
Xf = mean(F);
Na = length(A);
Nb = length(B);
Nc = length(C);
Nd = length(D);
Ne = length(E);
Nf = length(F);
G = mean([A,B,C,D,E,F])
k = 6;
N = Na + Nb + Nc + Nd + Ne + Nf
MSSb = ( Na* (Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2 + Nd* (Xd-G)^2 + Ne* (Xe-G)^2 +
Nf*(Xf-G)^2 ) / (k-1)
MSSw = ( (Na-1)*var(A) + (Nb-1)*var(B) + (NC-1)*var(C) + (Nd-1)*var(D) +
(Ne-1)*var(E) + (Nf-1)*var(F)) / (N-k)
F = MSSb / MSSw
G = 0.2403
N}=1
MSSb = 0.0037
MSSw = 0.0014
F}=2.606
```

From StatTrek, this F-score corresponds to a probability of 92\%

- I am $\mathbf{9 2 \%}$ certain that the three groups do not have the same mean
- You should not combine all six groups: at least one has a diferent mean.

My bet is there is a difference between sober and 2 drinks.

