ECE 341-Test \#1

Combinations, Permitations, and Discrete Probability

Open-Book, Open Notes. Calculators, Matlab, Tarot cards allowed. Just not other people.

1. Enumeration and Dice

Let

$$
M=\left(\frac{\text { birth month }+14}{5}\right) \text { rounded down (for example, February results in } \mathrm{M}=(2+14) / 5=3.2=3 \text {) }
$$

$$
N=\left(\frac{\text { birth date }+30}{10}\right) \text { rounded down (for example, the } 14 \text { th results in } \mathrm{N}=(14+30) / 10=4.4=4 \text {) }
$$

M			N			
Jan - May	June - Oct	Nov - Dec	$1-9$	$10-19$	$20-29$	$30-31$
3	4	5	3	4	5	6

Assume you are rolling two dice:

- $\mathrm{d} 1=1 . . \mathrm{M}$
- $\mathrm{d} 2=1 . . \mathrm{N}$

Let Y be the difference betwen the two rolls
Determine through enumeration the probability that $\mathrm{Y}=\{0 . .5\}$

M	N	$\mathrm{p}(\mathrm{Y}=0)$	$\mathrm{p}(\mathrm{Y}=1)$	$\mathrm{p}(\mathrm{Y}=2)$	$\mathrm{p}(\mathrm{Y}=3)$	$\mathrm{p}(\mathrm{Y}=4)$
3	4	3	5	3	1	0

$y \quad N$

M
1

1	2	3	4
0	1	2	3
1	0	1	2
2	1	0	1

2. Combinations and Permutations

Using combinations and permutations, calculate the odds of a full house (xxx yy) in 7-card stud poker

- You are dealt 7 cards
- One card value has three of a kind (xxx)
- Another card has two of a kind (yy)
- The other two cards could be anything except x (which would be 4 of a kind)
- also except yy

The number of ways to deal 7 cards is

$$
N=\binom{52}{7}=133,784,560
$$

The number of hands that are full house are
hand = xxx yy ab or xxx yyy a
xxx yy ab
(13 values pick 1 for x$)(4 \mathrm{x}$'s, pick 3$)(12$ values left pick 1 for y$)(4$ y's, pick 2$)(44$ cards pick 2 for ab$)$

$$
M=\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}\binom{44}{2}=3,541,824
$$

xxx yyy a
(13 values pick 2 for xy)(4 x's pick 3)(4 y's pick 3)(44 cards pick 1 for a)

$$
\begin{aligned}
& M_{2}=\binom{13}{2}\binom{4}{3}\binom{4}{3}\binom{44}{1}=54,912 \\
& M=M_{1}+M_{2}=3,596,736
\end{aligned}
$$

The odds then are

$$
p=\frac{M}{N}=0.02688
$$

From a Monte-Carlo simulation in matlab,

$$
\mathrm{p}=0.0262 \text { (100,000 hands) }
$$

3. Binomial Distribution

Let

$$
\begin{aligned}
& M=\left(\frac{\text { birth month }+14}{5}\right) \text { rounded down (for example, February results in } \mathrm{M}=(2+14) / 5=3.2=3 \text {) } \\
& N=\left(\frac{\text { birth date }+30}{10}\right) \text { rounded down (for example, the } 14 \text { th results in } \mathrm{N}=(14+30) / 10=4.4=4 \text {) }
\end{aligned}
$$

Assume

- N -sided dice (rolls numbers $1 . . \mathrm{N}$)
- You roll 10 of these N -sided dice
- $\mathrm{Y}=$ the number of 1 's and 2's on these ten dice.

What is the probability that $\mathrm{Y}=\mathrm{M}$?

M \# successes	N N sided dice	$\mathrm{p}(\mathrm{y}=\mathrm{M})$ 3
$\mathbf{4}$	M rolls or 1 or 2 on with 10 die rolls	

$$
\begin{aligned}
& p=\left(\frac{2}{4}\right)=\left(\frac{1}{2}\right) \quad q=1-p=\left(\frac{1}{2}\right) \\
& p(3)=\binom{10}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{7}=0.11719
\end{aligned}
$$

You can also solve in Matlab

```
>> d1 = [0.5,0.5]';
>> d2 = conv(d1,d1);
>> d4 = conv(d2,d2);
>> d8 = conv(d4,d4);
>> d10 = conv(d8,d2);
>> k = [0:10]';
>> bar(k,d10)
>> title('10 coin tosses, p = 2/4');
>> xlabel('k');
>> ylabel('p(k)');
>> [k,d10]
```

k	$\mathrm{p}(\mathrm{k})$
0	0.0010
1.0000	0.0098
2.0000	0.0439
3.0000	0.1172
4.0000	0.2051
5.0000	0.2461
6.0000	0.2051
7.0000	0.1172
8.0000	0.0439
9.0000	0.0098
10.0000	0.0010

4. Uniform Distribution and Convolution

Let

$$
\begin{aligned}
& M=\left(\frac{\text { birth month }+14}{5}\right) \text { rounded down (for example, February results in } \mathrm{M}=(2+14) / 5=3.2=3 \text {) } \\
& N=\left(\frac{\text { birth date }+30}{10}\right) \text { rounded down (for example, the } 14 \text { th results in } \mathrm{N}=(14+30) / 10=4.4=4 \text {) }
\end{aligned}
$$

Assume

- N -sided dice (rolls numbers $1 . . \mathrm{N}$)
- You roll M of these N -sided dice
- $Y=$ the sum of all M dice
a) Determine the pdf for Y : the sum of all of the dice
b) Determine the probability that the sum is 7 or less.

M	N	$p(y=x)$	$p(y<=7)$
3	4	see below	0.500

a) Using Matlab

```
>> d1 = [0,1,1,1,1]' / 4;
>> d2 = conv(d1,d1);
>> d3 = conv(d1,d2);
>> k = [0:12]';
>> [k,d3]
```



```
>> bar(k,d3)
```

>> bar(k,d3)
>> % probability of 7 or less
>> % probability of 7 or less
>> sum(d3(1:8))
>> sum(d3(1:8))
ans =

```
ans =
```


5. Geometric \& Pascal Distribution

Let

$$
\begin{aligned}
& M=\left(\frac{\text { birth month }+14}{5}\right) \text { rounded down (for example, February results in } \mathrm{M}=(2+14) / 5=3.2=3 \text {) } \\
& \left.N=\left(\frac{\text { birth date }+30}{10}\right) \text { rounded down (for example, the } 14 \text { th results in } \mathrm{N}=(14+30) / 10=4.4=4\right)
\end{aligned}
$$

Let

- d1 is an M-sided die (rolls numbers 1..M)
- d2 is an N -sided die (rolls the numbers $1 . . \mathrm{N}$)

Let Y be

- The number of times you have to roll d1 to get a 1 or 2 , plus
- The number of times you have to roll d2 to get a 1 .

Determine the explicit fumction for $y(x)$ using z-transforms

- partial credit of you solve for the pdf of $y(x)$ using a different method

M	N	$\mathrm{p}(\mathrm{y}=\mathrm{k})$
$\mathbf{3}$	$\mathbf{4}$	$y(k)=\left(-0.4\left(\frac{1}{3}\right)^{k-1}+0.4\left(\frac{3}{4}\right)^{k-1}\right) u(k-1)$
$\mathrm{p}=2 / 3$		

The moment generating functions are

$$
\begin{aligned}
& M=\left(\frac{2 / 3}{z-1 / 3}\right) \\
& N=\left(\frac{1 / 4}{z-3 / 4}\right) \\
& Y=\left(\frac{2 / 3}{z-1 / 3}\right)\left(\frac{1 / 4}{z-3 / 4}\right)
\end{aligned}
$$

using partial fractions

$$
\begin{aligned}
& z Y=\left(\left(\frac{-0.4}{z-1 / 3}\right)+\left(\frac{0.4}{z-3 / 4}\right)\right) z \\
& z y(k)=\left(-0.4\left(\frac{1}{3}\right)^{k}+0.4\left(\frac{3}{4}\right)^{k}\right) u(k) \\
& y(k)=\left(-0.4\left(\frac{1}{3}\right)^{k-1}+0.4\left(\frac{3}{4}\right)^{k-1}\right) u(k-1)
\end{aligned}
$$

Solving using matlab (partial credit)

```
>> k = [0:50]';
>> dl = (2/3) * (1/3).^ (k-1);
>> dl(1) = 0;
>> d2 = (1/4) * (3/4).^ (k-1);
>> d2(1) = 0;
>> y = conv(d1,d2);
>> y = y(1:51);
>> bar(k,Y)
>> xlim([0,30])
>> xlabel('k');
>> ylabel('p(k)');
>>
>> [k,Y]
\begin{tabular}{cr}
k & \(\mathrm{p}(\mathrm{k})\) \\
0 & 0 \\
1.0000 & 0 \\
2.0000 & 0.1667 \\
3.0000 & 0.1806 \\
4.0000 & 0.1539 \\
5.0000 & 0.1216 \\
6.0000 & 0.0933 \\
7.0000 & 0.0706 \\
8.0000 & 0.0532 \\
9.0000 & 0.0400 \\
10.0000 & 0.0300 \\
. &.
\end{tabular}
```


