ECE 341 - Test \#1

Combinations, Permitations, and Discrete Probability

Open-Book, Open Notes. Calculators, Matlab, Tarot cards allowed. Just not other people.

Enumeration and Dice test: do not post

Let

$$
\begin{aligned}
& M=\left(\frac{\text { birth month }+14}{5}\right) \text { rounded down (for example, February results in } \mathrm{M}=(2+14) / 5=3.2=3 \text {) } \\
& N=\left(\frac{\text { birth date }+30}{10}\right) \text { rounded down (for example, the 14th results in } \mathrm{N}=(14+30) / 10=4.4=4 \text {) }
\end{aligned}
$$

Assume you are rolling two dice:

- $\mathrm{d} 1=1$.. M
- $\mathrm{d} 2=1 . . \mathrm{N}$

Let Y be the difference betwen the two rolls
Determine through enumeration the probability that $\mathrm{Y}=\{0 . .5\}$

M	N	$\mathrm{p}(\mathrm{Y}=0)$	$\mathrm{p}(\mathrm{Y}=1)$	$\mathrm{p}(\mathrm{Y}=2)$	$\mathrm{p}(\mathrm{Y}=3)$	$\mathrm{p}(\mathrm{Y}=4)$

Combinations and Permutations

test: do not post

Using combinations and permutations, calculate the odds of a full house (xxx yy) in 7-card stud poker

- You are dealt 7 cards
- One card value has three of a kind (xxx)
- Another card has two of a kind (yy)
- The other two cards could be anything except x (which would be 4 of a kind)

Binomial Distribution

test: do not post

Let

$$
\begin{aligned}
& M=\left(\frac{\text { birth month }+14}{5}\right) \text { rounded down (for example, February results in } \mathrm{M}=(2+14) / 5=3.2=3 \text {) } \\
& N=\left(\frac{\text { birth date }+30}{10}\right) \text { rounded down (for example, the } 14 \text { th results in } \mathrm{N}=(14+30) / 10=4.4=4 \text {) }
\end{aligned}
$$

Assume

- N -sided dice (rolls numbers 1..N)
- You roll 10 of these N -sided dice
- $\mathrm{Y}=$ the number of 1 's and 2's on these ten dice.

What is the probability that $\mathrm{Y}=\mathrm{M}$?

M	N	
\# successes	N sided dice	$p(y=M)$

Uniform Distribution and Convolution

Let

$$
\begin{aligned}
& M=\left(\frac{\text { birth month }+14}{5}\right) \text { rounded down (for example, February results in } \mathrm{M}=(2+14) / 5=3.2=3 \text {) } \\
& N=\left(\frac{\text { birth date }+30}{10}\right) \text { rounded down (for example, the } 14 \text { th results in } \mathrm{N}=(14+30) / 10=4.4=4 \text {) }
\end{aligned}
$$

Assume

- N -sided dice (rolls numbers 1..N)
- You roll M of these N -sided dice
- $Y=$ the sum of all M dice
a) Determine the pdf for Y : the sum of all of the dice
b) Determine the probability that the sum is 7 or less.

M	N	$\mathrm{p}(\mathrm{y}=\mathrm{x})$	$\mathrm{p}(\mathrm{y}<=7)$

Geometric \& Pascal Distribution

test: do not post

Let

$$
\begin{aligned}
& M=\left(\frac{\text { birth month }+14}{5}\right) \text { rounded down (for example, February results in } \mathrm{M}=(2+14) / 5=3.2=3 \text {) } \\
& N=\left(\frac{\text { birth date }+30}{10}\right) \text { rounded down (for example, the } 14 \text { th results in } \mathrm{N}=(14+30) / 10=4.4=4 \text {) }
\end{aligned}
$$

Let

- d 1 is an M -sided die (rolls numbers 1..M)
- d 2 is an N -sided die (rolls the numbers $1 . . \mathrm{N}$)

Let Y be

- The number of times you have to roll d1 to get a 1 or 2 , plus
- The number of times you have to roll d2 to get a 1 .

Determine the explicit fumction for $\mathrm{y}(\mathrm{x})$ using z -transforms

- partial credit of you solve for the pdf of $y(x)$ using a different method

M	N	

