ECE 341 - Test \#2b

Continuous Probability
Open-Book, Open Notes. Calculators, Matlab, Tarot cards allowed. Just not other people.

1. Continuous PDF

Test - Do Not Post
Determine the moment generating function (i.e. LaPlace transform) that corresponds to the following pdf.

2. Continuous CDF Test - Do Not Post

a) Determine the cumulative density function (cdf) that corresponds to the above pdf.
b) In Matlab, generate 5 random numbers between 0 and 1 (rand function).

- Determine x that corresponds to each random number using the cdf.

3. Uniform Distribution

Let

- A be a uniform distribution over the range of $(0,4)$,
- B be a uniform distribution over the range of $(0,5)$, and
- C be a uniform distribution over the range of $(0,6)$.
- Y be the sum: $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
a) Determine the pdf of Y
b) Determine the probability that $\mathrm{Y}>13$

4. Central Limit Theorem

Let

- A be a uniform distribution over the range of $(0,4)$,
- B be a uniform distribution over the range of $(0,5)$, and
- C be a uniform distribution over the range of $(0,6)$.
- Y be the sum: $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
a) Determine the mean and standard deviation of Y
b) Using a normal approximation, determine the probability that $\mathrm{Y}>13$
- note: For a uniform distribution over the range of (a, b)

$$
\mu=\left(\frac{a+b}{2}\right), \quad \sigma^{2}=\frac{(b-a)^{2}}{12}, \quad \sigma=\frac{b-a}{\sqrt{12}}
$$

$\operatorname{mean}(\mathrm{Y})$	$\operatorname{std}(\mathrm{Y})$	$\mathrm{p}(\mathrm{Y}<13)$

5. Testing with Normal Distributions

Assume each resistor has 5\% tolerance:

$$
R=(1+0.05 x) R_{0}
$$

where x is a uniform distribution over the range of $(-1,1)$. In Matlab

$$
\begin{aligned}
& \mathrm{R} 1=1000^{*}\left(1+0.05^{*}(\operatorname{rand} * 2-1)\right) ; \\
& \mathrm{R} 2=2000^{*}\left(1+0.05^{*}(\operatorname{rand} 2-1)\right) ; \\
& \mathrm{R} 3=3000^{*}\left(1+0.05^{*}(\mathrm{rand} 2-1)\right) ;
\end{aligned}
$$

a) Determine V1 as a function of $\{\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3\}$

b) Run a Monte Carlo simulation to solve for V1 with 100 random values for $\{\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3\}$
c) Determine the mean and standard deviation of V1
d) Determine the 90% confidence interval for V1 using a normal approximation

mean(V1)	std(V1)	90% confidence interval for V1

