ECE 341 - Test #2b

Continuous Probability

Open-Book, Open Notes. Calculators, Matlab, Tarot cards allowed. Just not other people.

1. Continuous PDF Test - Do Not Post

Determine the moment generating function (i.e. LaPlace transform) that corresponds to the following pdf.

2. Continuous CDF

a) Determine the cumulative density function (cdf) that corresponds to the above pdf.

b) In Matlab, generate 5 random numbers between 0 and 1 (rand function).

• Determine x that corresponds to each random number using the cdf.

3. Uniform Distribution

Test - Do Not Post

Let

- A be a uniform distribution over the range of (0, 4),
- B be a uniform distribution over the range of (0, 5), and
- C be a uniform distribution over the range of (0,6).
- Y be the sum: Y = A + B + C

a) Determine the pdf of Y

b) Determine the probability that Y > 13

4. Central Limit Theorem

Test - Do Not Post

Let

- A be a uniform distribution over the range of (0, 4),
- B be a uniform distribution over the range of (0, 5), and
- C be a uniform distribution over the range of (0,6).
- Y be the sum: Y = A + B + C

a) Determine the mean and standard deviation of Y

- b) Using a normal approximation, determine the probability that Y > 13
 - note: For a uniform distribution over the range of (a,b)

$$\mu = \left(\frac{a+b}{2}\right), \quad \sigma^2 = \frac{(b-a)^2}{12}, \quad \sigma = \frac{b-a}{\sqrt{12}}$$

mean(Y)	std(Y)	p(Y < 13)

5. Testing with Normal Distributions

Test - Do Not Post

Assume each resistor has 5% tolerance:

$$R = (1 + 0.05x)R_0$$

where x is a uniform distribution over the range of (-1, 1). In Matlab

R1 = 1000*(1+0.05*(rand*2-1)); R2 = 2000*(1+0.05*(rand*2-1)); R3 = 3000*(1+0.05*(rand*2-1));

a) Determine V1 as a function of {R1, R2, R3}

b) Run a Monte Carlo simulation to solve for

V1 with 100 random values for {R1, R2, R3}

c) Determine the mean and standard deviation of V1

d) Determine the 90% confidence interval for V1 using a normal approximation

mean(V1)	std(V1)	90% confidence interval for V1

