ECE 341-Test \#3

Markov Chains and Data Analysis. Summer 2021

Open-Book, Open Notes. Calculators, Matlab, Tarot cards, StatTrek allowed. Just not other people.

1) Markov Chains:

Two people, A and B , are playing a game.

- A has a 20% chance of winning A gains +1 point on a win
- There is a 70% chance of a tie Neither A nor B score a point
- A has a 10% chance of losing A loses 2 points

If A reaches +2 points, A wins the match (win by 2)
If A reaces -2 points, B wins the match
1a) What is the state transition matrix (going from k games to $\mathrm{k}+1$ games)

$$
\left[\begin{array}{c}
X_{2}(k+1) \\
X_{1}(k+1) \\
X_{0}(k+1) \\
X_{-1}(k+1) \\
X_{-2}(k+1)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0.2 & 0 & 0 & 0 \\
0 & 0.7 & 0.2 & 0 & 0 \\
0 & 0 & 0.7 & 0.2 & 0 \\
0 & 0.1 & 0 & 0.7 & 0 \\
0 & 0 & 0.1 & 0.1 & 1
\end{array}\right]\left[\begin{array}{c}
X_{2}(k) \\
X_{1}(k) \\
X_{0}(k) \\
X_{-1}(k) \\
X_{-2}(k)
\end{array}\right]
$$

1b) What is the probability that the match will end after 10 games (either A or B wins after 10 games)
In Matlab

```
>>A=[1,0.2,0,0,0;0,0.7,0.2,0,0 ; 0,0,0.7,0.2,0 ; 0,0.1,0,0.7,0 ;
0,0,0.1,0.1,1]
```

1.0000	0.2000	0	0	0
0	0.7000	0.2000	0	0
0	0	0.7000	0.2000	0
0	0.1000	0	0.7000	0
0	0	0.1000	0.1000	1.0000

>> A^10

1.0000	0.6826	0.3880	0.1850	0
0	0.0686	0.1006	0.1106	0
0	0.0553	0.0686	0.1006	0
0	0.0503	0.0553	0.0686	0
0	0.1432	0.3875	0.5353	1.0000

>>

After 10 games

- There is a 38.80% chance that A has won
- There is a 38.75% chance that B has won

1c) What is the probability that A will eventually win the match?

1.0000	0.7826	0.5217	0.3478	0
0	0.0000	0.0000	0.0000	0
0	0.0000	0.0000	0.0000	0
0	0.0000	0.0000	0.0000	0
0	0.2174	0.4783	0.6522	1.0000

A has an 52.17% chance of eventually winning the match with this format.

2) t -Test: One data set.

a) Generate 10 random numbers in Matlab

```
X = zeros(10,1);
for i=1:10
    X(i) = 100*sum( rand(4,1) .^ 0.4 );
    end
```

>> X
328.4937
261.1877
343.4287
310.4198
356.8023
301.8121
332.7129
246.0043
220.9325
273.5838
b) Use a t-test to determine the 90% confidence interval for X

t -score	90% confidence interval for x
$\mathbf{t}=1.833$	$\mathbf{2 1 4 . 6 1 8 9}$ to 380.4566

```
>> x = mean(X)
x = 297.5378
>> s = std(X)
s = 45.2367
>> high = x + 1.833*s
high = 380.4566
>> low = x - 1.833*s
low = 214.6189
```


c) Use a t-test to determine the probability that $\mathrm{X}>350$

t-score	$p(x>350)$
1.1597	$p=0.1380$

```
>> t = (350 - x) / s
t = 1.1597
```


3) t-Test (Two data sets):

3a) Generate two sets of random numbersfor X and Y in Matlab (10 trials each)

```
    X = zeros(10,1);
    for i=1:10
        X(i) = 100*sum( rand(4,1) .^ 0.4 );
        end
    Y = zeros(10,1);
    for i=1:10
        Y(i) = 90*sum( rand(6,1) .^ 0.7 );
        end
>> [X,Y]
    X Y
321.0482 365.5862
282.6372 280.6923
321.9638 354.3522
251.1578 245.2314
299.0121 333.6652
309.8946 286.7434
317.7734 320.4592
255.9728 300.4032
311.7623 308.9908
266.2294 271.1690
```

3b) If you generate an 11th value for X and Y, what is the probability that $Y>X$?

t-score	$p(y(11)>x(11))$
0.2777	$p=0.5800$
varies with data	9 degrees of freedom (approx)
	$0=0.5808$
13 degrees of freedom	

```
>>Xx = mean(X)
    Xx = 293.7452
>> Sx = std(X)
    Sx = 27.5947
>> Xy = mean(Y)
    Xy = 306.7293
>> Sy = std(Y)
    Sy = 37.7347
>> Xw = Xy - Xx
    Xw = 12.9841
>> Sw = sqrt(Sx^2 + Sy^2)
    Sw = 46.7480
>> t = Xw / Sw
    t = 0.2777
```


3c) Based up 10 data points, what is the probability that the mean of Y is larger than the mean of X ?

t-score	$p(\operatorname{mean}(Y)>\operatorname{mean}(X))$
$\mathbf{t}=\mathbf{0 . 8 7 8 3}$	
varies with data	

```
>> Xw = Xy - Xx
Xw = 12.9841
>> Sw = sqrt (Sx^2 /10 + Sy^2 /10)
Sw = 14.7830
>> t = Xw / Sw
t = 0.8783
```


4) Chi-Squared Test:

The following Matlab code generated 100 random values for X :

```
RESULT = zeros(1,5);
for i=1:100
    d5 = ceil( 5*(rand ^ 0.9) );
    RESULT(d5) = RESULT(d5) + 1;
    end
RESULT
\begin{tabular}{llllll} 
RESULT & \(=\) & 12 & 28 & 26 & 17
\end{tabular}
```

It is conjectured that X has a uniform distribution over the range of $(1,5)$
4a) Generate 100 values for X and give the result (give the number of times you rolled each number)

1	2	3	4	5
12	28	26	17	17

4b) Determine if X does or does not have a uniform distribution (i.e. is a fair die) using a Chi-squared test.

chi-squared critical value	$\mathrm{p}(\mathrm{d} 5$ is not a uniform distribution $)$
$\mathbf{9 . 1 0}$	$\mathbf{0}=\mathbf{0 . 9 4}$

Roll	p	np	N	chi-squared
1	$1 / 5$	20	12	3.2
2	$1 / 5$	20	28	3.2
3	$1 / 5$	20	26	1.8
4	$1 / 5$	20	17	0.45
5	$1 / 5$	20	17	0.45

- Enter a value for degrees of freedom
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes

Degrees of freedom	4
Chi-square critical value (CV)	9.1
$P\left(X^{2}<9.1\right)$	0.94
$P\left(X^{2}>9.1\right)$	0.06

5) F-Test (Three data sets):

The reaction time of three people are measured:

Person	A	B	C
Reaction	0.2253	0.1924	0.2419
Times	0.1923	0.1893	0.1976
	0.1854	0.2018	0.3063

5a) What is the probability that the variance of A is different than the variance of B ? (F-test)

F-score	$p(\operatorname{var}(\mathrm{~A})!=\operatorname{var}(\mathrm{B}))$
$F=10.7333$	$0=0,9$

$\mathrm{A}=[0.22530 ; 0.1923$; 0.1854];
$B=[0.1924 ; 0.1893$; 0.2018];
$C=[0.2419$; 0.1976 ; 0.3063];
$\mathrm{F}=\operatorname{var}(\mathrm{A}) / \operatorname{var}(\mathrm{B})$
$\mathrm{F}=10.7333$

5b) What is the probability that all three people have the same average reaction time using an ANOVA test?

MSSb	MSSw $^{\text {M.score }}$	$p($ means are different $)$	
0.0026	0.0012	$\mathbf{F}=\mathbf{2 . 2 5 3 3}$	$\mathbf{p = 0 . 8 1}$

```
A = [ 0.22530; 0.1923 ; 0.1854 ];
B = [ 0.1924; 0.1893 ; 0.2018 ];
C = [ 0.2419 ; 0.1976 ; 0.3063 ];
Na = length(A);
Nb = length(B);
Nc = length(C);
N}=\textrm{Na}+\textrm{Nb}+\textrm{NC
k = 3;
G = mean([A;B;C])
MSSb = ( Na*(mean(A)-G)^2 + Nb*(mean(B)-G)^2 + Nc*(mean(C)-G)^2 ) / (k-1)
MSSw = ( (Na-1)*var(A) + (Nb-1)*var(B) + (Nc-1)*var(C) ) / (N - k)
F = MSSb / MSSw
N = 9
G = 0.2147
MSSb = 0.0026
MSSw = 0.0012
F=2.2533
```

- Enter values for degrees of freedom.
- Enter a value for one, and only one, of the remaining text boxes.
- Click the Calculate button to compute a value for the blank text box.

Degrees of freedom $\left(v_{1}\right)$	\square
Degrees of freedom $\left(v_{2}\right)$	6

Cumulative prob:
$\mathrm{P}(\mathrm{F} \leq 2.2533)$ \square
f value $\quad 2.2533$

