ECE 341 - Test #3

Markov Chains and Data Analysis. Summer 2021

Open-Book, Open Notes. Calculators, Matlab, Tarot cards, StatTrek allowed. Just not other people.

1) Markov Chains:

Two people, A and B, are playing a game.

- A has a 20% chance of winning A gains +1 point on a win
- There is a 70% chance of a tie Neither A nor B score a point
- A has a 10% chance of losing A loses 2 points

If A reaches +2 points, A wins the match (win by 2)

If A reaces -2 points, B wins the match

1a) What is the state transition matrix (going from k games to k+1 games)

$X_2(k+1)$		1	0.2	0	0	0	$\int X_2(k)$
$X_1(k+1)$		0	0.7	0.2	0	0	$X_1(k)$
$X_0(k+1)$	=	0	0	0.7	0.2	0	$X_0(k)$
$X_{-1}(k+1)$		0	0.1	0	0.7	0	$X_{-1}(k)$
$X_{-2}(k+1)$		0	0	0.1	0.1	1	$X_{-2}(k)$

1b) What is the probability that the match will end after 10 games (either A or B wins after 10 games)

In Matlab

```
>> A = [1, 0.2, 0, 0, 0; 0, 0.7, 0.2, 0, 0; 0, 0, 0.7, 0.2, 0; 0, 0.1, 0, 0.7, 0;
0, 0, 0.1, 0.1, 1]
    1.0000
                                                       0
               0.2000
                                 0
                                            0
          0
               0.7000
                          0.2000
                                            0
                                                        0
          0
                     0
                           0.7000
                                      0.2000
                                                        0
               0.1000
          0
                                 0
                                      0.7000
                                                        0
          0
                     0
                           0.1000
                                      0.1000
                                                  1.0000
>> A^10
    1.0000
               0.6826
                           0.3880
                                      0.1850
                                                        0
          0
               0.0686
                           0.1006
                                      0.1106
                                                        0
          0
               0.0553
                           0.0686
                                      0.1006
                                                        0
          0
                0.0503
                           0.0553
                                      0.0686
                                                        0
          0
                0.1432
                           0.3875
                                      0.5353
                                                  1.0000
```

>>

After 10 games

- There is a 38.80% chance that A has won
- There is a 38.75% chance that B has won

The odds that someone has won after 10 games is 77.55%

1c) What is the probability that A will eventually win the match?

>> A^100

000 0.	7826 0.5	5217 0.	3478	0
0 0.	0000 0.0	0000 0.	0000	0
0 0.	0000 0.0	0000 0.	0000	0
0 0.	0000 0.0	0000 0.	0000	0
0 0.3	2174 0.4	1783 0.	6522 1	.0000
	000 0. 0 0. 0 0. 0 0. 0 0.	000 0.7826 0.5 0 0.0000 0.0 0 0.0000 0.0 0 0.0000 0.0 0 0.0000 0.0 0 0.2174 0.4	000 0.7826 0.5217 0. 0 0.0000 0.0000 0. 0 0.0000 0.0000 0. 0 0.0000 0.0000 0. 0 0.2174 0.4783 0.	000 0.7826 0.5217 0.3478 0 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0 0.2174 0.4783 0.6522 1

A has an 52.17% chance of eventually winning the match with this format.

2) t-Test: One data set.

a) Generate 10 random numbers in Matlab

```
X = zeros(10,1);
for i=1:10
    X(i) = 100*sum( rand(4,1) .^ 0.4);
    end
>> X
328.4937
261.1877
343.4287
310.4198
356.8023
301.8121
332.7129
246.0043
220.9325
273.5838
```

b) Use a t-test to determine the 90% confidence interval for X

c) Use a t-test to determine the probability that X > 350

>> t = $(350 - x) / x$	S
------------------------	---

t = 1.1597

 In the dropdown box, describe the random variable. 			
 Enter a value for degrees of freedom. 			
 Enter a value for all but one of the remaining text boxes. 			
 Click the Calculate button to compute a value for the blank text box. 			
Random variable t score ▼			
Degrees of freedom 9			
t score -1.1597			
Probability: P(T ≤ -1.1597) 0.1380			

3) t-Test (Two data sets):

3a) Generate two sets of random numbers for X and Y in Matlab (10 trials each)

```
X = zeros(10,1);
   for i=1:10
     X(i) = 100 * sum( rand(4,1) .^{0.4});
     end
  Y = zeros(10, 1);
  for i=1:10
     Y(i) = 90*sum( rand(6,1) .^{0.7});
     end
>> [X,Y]
    Х
             Y
 321.0482 365.5862
 282.6372 280.6923
 321.9638 354.3522
 251.1578 245.2314
 299.0121 333.6652
 309.8946 286.7434
 317.7734 320.4592
 255.9728 300.4032
 311.7623 308.9908
 266.2294 271.1690
```

3b) If you generate an 11th value for X and Y, what is the probability that Y > X?


```
>>Xx = mean(X)
    Xx = 293.7452
>> Sx = std(X)
    Sx = 27.5947
>> Xy = mean(Y)
    Xy = 306.7293
>> Sy = std(Y)
    Sy = 37.7347
>> Xw = Xy - Xx
    Xw = 12.9841
>> Sw = sqrt(Sx^2 + Sy^2)
    Sw = 46.7480
>> t = Xw / Sw
    t = 0.2777
```

 In the dropdo 	own box, describe the random variable.		
Enter a value for degrees of freedom.			
Enter a value	o for all but one of the remaining text bo	Xes.	
Click the Cal	culate button to compute a value for the	e blank text box.	
	Random variable t score	9 ▼	
	Random variable t score Degrees of freedom 9	∍ ▼	
	Random variable t score Degrees of freedom 9 t score	e ▼ 0.2077	

3c) Based up 10 data points, what is the probability that the mean of Y is larger than the mean of X?

t-score	p(mean(Y) > mean(X))
t = 0.8783	p = 0.7987
varies with data	_
>> Xw = Xy - Xx	
Xw = 12.9841	
>> Sw = sqrt(Sx^2 /10 + Sy^2 /10)	
Sw = 14.7830	
>> t = Xw / Sw	
t = 0.8783	
 In the dropdown box, describe the ran 	dom variable.

- Enter a value for degrees of freedom.
- Enter a value for all but one of the remaining text boxes.
- Click the Calculate button to compute a value for the blank text box.

Random variable	t score 🔹
Degrees of freedom	9
t score	0.8783
Probability: $P(T \le 0.8783)$	0.7987

4) Chi-Squared Test:

The following Matlab code generated 100 random values for X:

```
RESULT = zeros(1,5);
for i=1:100
    d5 = ceil( 5*(rand ^ 0.9) );
    RESULT(d5) = RESULT(d5) + 1;
    end
RESULT
RESULT = 12 28 26 17 17
```

It is conjectured that X has a uniform distribution over the range of (1, 5)

4a) Generate 100 values for X and give the result (give the number of times you rolled each number)

1	2	3	4	5
12	28	26	17	17

4b) Determine if X does or does not have a uniform distribution (i.e. is a fair die) using a Chi-squared test.

chi-squared critical value		p(d5 is not a ui	niform distribution)	
9.10		p = 0.94		
Roll	р	np	N	chi-squared
1	1/5	20	12	3.2
2	1/5	20	28	3.2
3	1/5	20	26	1.8
4	1/5	20	17	0.45
5	1/5	20	17	0.45
			Total	9.1

 Enter a value for degrees of freedom. 			
 Enter a value for one, and only one, of the remaining unshaded text boxes. 			
Click the Calculate button to compute values for the other text boxes.			
Degrees of freedom	4		
Chi-square critical value (CV) 9.1			
P(X ² < 9.1) 0.94			
P(X ² > 9.1) 0.06			

5) F-Test (Three data sets):

The reaction time of three people are measured:

Person	A	В	С
Reaction	0.2253	0.1924	0.2419
Times	0.1923	0.1893	0.1976
	0.1854	0.2018	0.3063

5a) What is the probability that the variance of A is different than the variance of B? (F-test)

F-score	p(var(A) != var(B))	
F = 10.7333	p = 0.91	

```
A = [ 0.22530; 0.1923 ; 0.1854 ];
B = [ 0.1924 ; 0.1893 ; 0.2018 ];
C = [ 0.2419 ; 0.1976 ; 0.3063 ];
```

```
F = var(A) / var(B)
F = 10.7333
```

 Enter values for degrees of freedom. 				
Enter a value for one, and only one, of the remaining text boxes.				
 Click the Calculate button to compute a value for the blank text box. 				
Degrees of freedom (v1)	2			
Degrees of freedom (v_2)	2			
Cumulative prob: P(F ≤ 10.733)	0.91			
f value	10.733			

5b) What is the probability that all three people have the same average reaction time using an ANOVA test?

MSSb	MSSw	F-score	p(means are different)
0.0026	0.0012	F = 2.2533	p = 0.81

```
A = [0.22530; 0.1923; 0.1854];
B = [0.1924; 0.1893; 0.2018];
C = [0.2419; 0.1976; 0.3063];
Na = length(A);
Nb = length(B);
Nc = length(C);
N = Na + Nb + Nc
k = 3;
G = mean([A;B;C])
MSSb = (Na*(mean(A)-G)^2 + Nb*(mean(B)-G)^2 + Nc*(mean(C)-G)^2) / (k-1)
MSSw = ( (Na-1)*var(A) + (Nb-1)*var(B) + (Nc-1)*var(C) ) / (N - k)
F = MSSb / MSSw
     9
N =
G = 0.2147
MSSb =
        0.0026
MSSw =
         0.0012
F = 2.2533
```

 Enter values for degrees of freedom. 			
 Enter a value for one, and only one, of the remaining text boxes. 			
 Click the Calculate button to compute a value for the blank text box. 			
Degrees of freedom (v1)	2		
Degrees of freedom (v_2)	6		
Cumulative prob: P(F ≤ 2.2533)	0.81		
f value	2.2533		