ECE 341 - Homework \#1

Tree Diagrams and Enumeration. Due Wednesday, May 19th
Please make the subject "ECE 341 HW\#1" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Two teams, A and B, are playing a best of 5 game series.

- The series is over once one team gets 3 points.
- The probability of A winning any given game is 0.7 .
- B starts out with 2 points (odds)

Draw the tree diagram for all possible outcomes of the series.

2) List all possible combinations of rolling a 4 -sided die (d4) and a 6 -sided die (d6) (enumaration).

$\begin{aligned} & \text { 4-sided } \\ & \text { die } \end{aligned}$	1	6 -sided die					
		1	2	3	4	5	6
		$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
	2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
	3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
	4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$

Also determine the probability $\mathrm{X}\{1 . .6\}$ where X is the difference between the two numbers (largest - smallest).
Score
6 -sided die

4-sided die

	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2

0 Points: $\quad(1,1),(2,2),(3,3),(4,4)$

- odds: $4 / 24$

1 point: $\quad(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5)$

- odds $=7 / 24$

2 points: $\quad(1,3),(2,4),(3,1),(3,5),(4,2),(4,6)$

- odds $=6 / 24$

3 points: $\quad(1,4),(2,5),(3,6),(4,1)$

- odds $=4 / 24$

4 points: $\quad(1,5),(2,6)$

- odds $=2 / 24$

5 points: $\quad(1,6)$

- odds $=1 / 24$

Two players, A and B , are playing a game of dice.

- Player A rolls a d4 and a d6 and takes the difference between the two numbers (i.e. problem \#2)
- Player B rolls a 6-sided die and subtracts one (d6-1).

Player A wins on ties.
3) What is the conditional probability

- Player A wins given B's score is 3 (B rolled a 4)

A has to score 3,4 , or 5 points

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~A}) \text { winning }=\mathrm{p}(3)+\mathrm{p}(4)+\mathrm{p}(5) \\
& \mathrm{p}(\mathrm{~A})=4 / 24+2 / 24+1 / 24 \\
& \mathrm{p}(\mathrm{~A})=7 / 24
\end{aligned}
$$

A has a 7/24 chance of winning given that B 's score is 3
4) What is the probability that player A will win any given game?

points	0	1	2	3	4	5
$p(A)$	$4 / 24$	$7 / 24$	$6 / 24$	$4 / 24$	$2 / 24$	$1 / 24$
$p(B)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

A scores 0 points:

$$
\mathrm{p}(\mathrm{~A}=0) * \mathrm{p}(\mathrm{~B}<=0)=(4 / 24) *(1 / 6)=4 / 144
$$

A scores 1 point

$$
\mathrm{p}(\mathrm{~A}=1) * \mathrm{p}(\mathrm{~B}<=1)=(7 / 24) *(2 / 6)=14 / 144
$$

A scores 2 points

$$
\mathrm{p}(\mathrm{~A}=2) * \mathrm{p}(\mathrm{~B}<=2)=(6 / 24) *(3 / 6)=18 / 144
$$

A scores 3 points

$$
\mathrm{p}(\mathrm{~A}=3) * \mathrm{p}(\mathrm{~B}<=3)=(4 / 24) *(4 / 6)=16 / 144
$$

A scores 4 points

$$
\mathrm{p}(\mathrm{~A}=4) * \mathrm{p}(\mathrm{~B}<=4)=(2 / 24) *(5 / 6)=10 / 144
$$

A scores 5 points

$$
\mathrm{p}(\mathrm{~A}=5) * \mathrm{p}(\mathrm{~B}<=5)=(1 / 24) *(6 / 6)=6 / 144
$$

Adding them up gives you 64/144 (0.4444)
A has a $\mathbf{4 4 . 4 4 \%}$ chance of winning this game

Monte Carlo Simulations \& Enumeration with Farkle:

5) Determine the probability of rolling 6 dice and getting 4 of a kind ($\mathrm{xxxx} \mathrm{y} \mathrm{z}, \mathrm{xyz}$ are different numbers) using a Monte Carlo simulation with 1 million rolls of the dice. (note: $x x x x$ yy counts as 3 pair not 4 of a kind)

Code:

```
% Lecture #1: Monte Carlo
% Roll six dice
% Count how many times you get 4 of a kind
% xxx a b c
% xxx aa b
tic
Pair4 = 0;
for games = 1:1e5
    Dice = ceil( 6*rand(1,6) );
    Dice = sort(Dice);
    % check for pairs
    N = zeros(1,6);
    for i=1:6
            N(i) = sum(Dice == i);
            end
                [N,b] = sort(N, 'descend');
if ( (N(1) == 4) & (N(2) < 2))
        Pair4 = Pair4 + 1;
        end
end
% probability:
disp('4 of a kind odds')
Pair4 / 1e5
toc
```

Monte-Carlo Simulation Results:

```
4 of a kind odds
ans = 0.0371
Elapsed time is 3.401550 seconds.
```

6) Determine the probability of rolling 6 dice and getting 4 of a kind using enumeration (exhaustive search).

Code:

```
\% Lecture \#1: Enumeration
\% Roll six dice
\% Count how many times you get 4 of a kind
\% xxxx a b
tic
Pair4 = 0;
for \(\mathrm{d} 1=1: 6\)
    for \(d 2=1: 6\)
        for d3 = 1:6
            for \(d 4=1: 6\)
                for d5 = 1:6
                for \(d 6=1: 6\)
                            Dice \(=[d 1, d 2, d 3, d 4, d 5, d 6]\);
                                \% check for pairs
                                \(\mathrm{N}=\) zeros \((1,6)\);
                                for \(i=1: 6\)
                                    \(\mathrm{N}(\mathrm{i})=\) sum(Dice == i);
                                    end
                            [N,b] = sort(N, 'descend');
                            if ( \((N(1)==4) \&(N(2)<2))\)
                                    Pair4 = Pair4 + 1;
                                    end
                                    end
                                end
                    end
                end
            end
        end
\% probability:
disp('4 of a kind odds')
Pair4 / (6^6)
toc
```

Results:

```
    4 of a kind odds
ans=0.0386
Elapsed time is 1.372184 seconds.
```


Monte Carlo Simulations \& Enumeration with 4-Card Poker

7) Determine the probabilty of being dealt 3 of a kind in 4-card poker (you're dealt only 4 cards)

- 52-card deck, deal 4 cards.
- The five cards are $x x x$ y where x, y are different values (ace to king)

Code:

```
% Lecture 1: Monte Carlo 4-Card Stud
% Probability of 3 of a kind
tic
Pair3 = 0;
for i0 = 1:1e5
X = rand(1,52);
[a,Deck] = sort(X);
Hand = Deck(1:4);
Value = mod(Hand,13) + 1;
Suit = floor(Hand/13) + 1;
N = zeros(1,13);
for n=1:13
    N(n) = sum(Value == n);
end
[N,a] = sort(N, 'descend');
if ((N(1) == 3)*(N(2) < 2)) Pair3 = Pair3 + 1; end
end
disp('3 of a kind');
[Pair3] / 1e5
toc
```

Result:

```
3 of a kind
    ans = 0.0095
Elapsed time is 10.636327 seconds.
```

8) Determine the probability of being dealy a 3 of a kind in 4-card poker using enumeration (exhaustive search).
```
% lecture 1: Enumeration
% 4-Card Stud
% Probability of 3 of a kind
tic
Pair3 = 0;
for c1=1:52
    for c2 = c1+1:52
        clc
        disp([c1,c2])
        for c3 = c2+1:52
                for c4 = c3+1:52
                            Hand = [c1, c2, c3, c4];
                        Value = mod(Hand,13) + 1;
                        Suit = floor(Hand/13) + 1;
                        N = zeros(1,13);
                        for n=1:13
                                N(n) = sum(Value == n);
                        end
                        [N,a] = sort(N, 'descend');
                            if (N(1) == 3) Pair3 = Pair3 + 1; end
                end
            end
        end
end
Pair3 / NchooseM(52,4)
toc
```

Result

```
ans = 0.0092
Elapsed time is 22.304311 seconds.
```

note: This matches the Monte Carlo results (0.0095)

```
>> Pair3
Pair3 = 2496
```

Sidelight: There are 2496 ways to get 3 of a kind in 4 -card poker.

