ECE 341 - Homework \#2

Card Games. Due Thursday, May 20th

Please make the subject "ECE 341 HW\#2" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

The card game bridge uses a 52 -card deck. Each person is dealt 13 cards for their hand.

1) How many different hands are possible? (order doesn't matter)

$$
N=\binom{52}{13}=\left(\frac{52!}{13!39!}\right)=635,013,559,600
$$

2) What is the probability of having 8 cards of one suit in your hand?
(4 suits, pick one)(13 cards in that suit, pick 8)(39 other cards, pick 5)

$$
M=\binom{4}{1}\binom{13}{8}\binom{39}{5}=2,963,997,036
$$

The probability of having 8 cards of the same suit are

$$
p=\left(\frac{2,963,997,036}{635,013,559,600}\right)=0.0008768
$$

The odds are 1140.45: 1 against having 8 cards of one suit
3) What is the probability of having honors? (you have four or five of the top 5 cards of any suit) 4 of top 5: (100 points)
(4 suits, pick 1)(5 top cards, pick 4)(of the remaining 47 cards, pick 9)

$$
M_{4}=\binom{4}{1}\binom{5}{4}\binom{47}{9}=27,252,982,900
$$

5 of top 5: (150 points)
(4 suits, pick 1)(5 top cards, pick 5)(of the remaining 47 cards, pick 8)

$$
M_{5}=\binom{4}{1}\binom{5}{5}\binom{47}{8}=1,257,829,980
$$

The odds of having honors is

$$
p=\left(\frac{M_{4}+M_{5}}{\binom{52}{13}}\right)=0.044898
$$

The odds are 22.27: 1 against

In 4-card poker, you are dealt just four cards

4) Compute the odds of a flush in 4-card poker.

- 4 cards of the same suit

The total number of hands in 4-card poker are

$$
N=\binom{52}{4}=270,725
$$

The number of hands that are a flush are

$$
(4 \text { suits, choose } 1) *(13 \text { cards, pick } 4)
$$

$$
M=\binom{4}{1}\binom{13}{4}=2,860
$$

The odds of drawing a flush in 4-card poker are

$$
p=\left(\frac{2,860}{270,725}\right)=0.01056
$$

There is a 1.056% chance of drawing a flush

The odds against drawing a flush are 94.65 : 1 against
5) Compute the odds of 3 of a kind in 4-card poker.

- xxx y

The number of hands that are 3 of a kind are...
(13 cards, pick 1 for x) (4 cards of that value, pick 3)(48 other cards, pick 1)

$$
M=\binom{13}{1}\binom{4}{3}\binom{48}{1}=2,496
$$

The probability of drawing 3 of a kind is

$$
p=\left(\frac{2,496}{270,725}\right)=0.00922
$$

There is a $\mathbf{0 . 9 2 2 \%}$ chance of drawing $\mathbf{3}$ of a kind
The odds are 108.46 : 1 against drawing a three of a kind
6) Determine the odds of drawing

- A flush and
- 3 of a kind
using Matlab and a Monte-Carlo simulation for 4-card poker
Code:

```
% ECE 341 Homework #2
% 4-Card Stud
% Flush and 3 of a kind
tic
Pair3 = 0;
Flush = 0;
for i0 = 1:1e5
    X = rand(1,52);
    [a,Deck] = sort(X);
    Hand = Deck(1:4);
    Value = mod(Hand,13) + 1;
    Suit = floor(Hand/13) + 1;
    N = zeros(1,13);
    for n=1:13
        N(n) = sum(Value == n);
    end
    [N,a] = sort(N, 'descend');
    S = zeros(1,4);
    for n=1:4
        S(n) = sum(Suit == n);
    end
    [S,a] = sort(S, 'descend');
    if (N(1) == 3) Pair3 = Pair3 + 1; end
    if (S(1) == 4) Flush = Flush + 1; end
end
[Pair3, Flush]
toc
```

Result: 100,000 hands of 4-card poker

```
ans = 901 958
Elapsed time is 13.670885 seconds.
```

3 of a kind:: 0.901% chance

- 901 flushes in 100,000 hands

Flush: 0.958\% chance

- 958 3-of-a-kind in 100,000 hands

Conditional Probabilities \& 4-card poker

7) Compute the probability of getting a flush if there is a single draw step

- If you are dealt a flush, you draw zero cards
- If you are dealt 3 cards of a suit, you keep those cards and draw one
- If you are dealt 2 cards of a suit, you keep those cards and draw two more
- Otherwise, draw 4 new cards

Only flushes count for this problem.

$$
\begin{array}{rlr}
\mathrm{p}(\text { Flush }) & =\mathrm{p}(\text { flush } \mid \text { drew } 4) * \mathrm{p}(\text { drew } 4) & (\text { case } A) \\
& +\mathrm{p}(\text { flush } \mid \text { drew } 3) * \mathrm{p}(\text { drew } 3) & (\text { case } B) \\
& +\mathrm{p}(\text { flush } \mid \text { drew } 2) * \mathrm{p}(\text { drew } 2) & (\text { case } \mathrm{C}) \\
& +\mathrm{p}(\text { flush } \mid \text { drew } 1) * \mathrm{p}(\text { drew } 1) & (\text { case } \mathrm{D})
\end{array}
$$

Case A:

$\mathrm{p}($ flush \mid drew 4$)=1.000$
$\mathrm{p}($ drew 4$)=0.01056 \quad$ from problem \#4

Case B:

$$
\begin{aligned}
& \mathrm{p}(\text { flush } \mid \text { drew } 3)=\left(\frac{(10 \text { remaining cards of that suit, choose } 1)}{(48 \text { cards choose } 1)}\right) \\
& =\frac{\binom{10}{1}}{\binom{48}{1}}=\left(\frac{10}{48}\right)=0.20833 \\
& \mathrm{p}(\text { draw } 3)
\end{aligned} \begin{aligned}
& =\left(\frac{(4 \text { suits choose } 1)(13 \text { cards of that suit, choose } 3)(42 \text { other cards choose } 1)}{(52 \text { cards choose } 4)}\right) \\
& =\left(\frac{\binom{4}{1}\binom{13}{3}\binom{42}{1}}{\binom{52}{4}}\right)=\left(\frac{48,048}{270,725}\right)=0.17748
\end{aligned}
$$

$\mathrm{p}($ flush \mid drew 3$) * \mathrm{p}($ drew 3$)=0.20833 * 0.17748=0.03697$

Case C:

$$
\mathrm{p}(\text { flush | drew } 2)=\left(\frac{(11 \text { cards of the suit choose } 2)}{(48 \text { cards choose } 2)}\right)=\left(\frac{\binom{11}{2}}{\binom{48}{2}}\right)=\left(\frac{55}{1128}\right)=0.04876
$$

The number of ways to draw 2 cards of the same suit is

$$
x x y y+x x y z
$$

$x x$ yy $=(4$ suits choose 2$)(13$ cards choose 2$)(13$ cards choose 2$)$

$$
=\binom{4}{2}\binom{13}{2}\binom{13}{2}=36,504
$$

$x x y z=(4$ suits choose 1 for $x)(13$ cards choose 2$)(3$ remaining suits choose 2$)(13$ cards choose 1 for $y)$ (13 cards choose 1 for z)

$$
=\binom{4}{1}\binom{13}{2}\binom{3}{2}\binom{13}{1}\binom{13}{1}=158,184
$$

The total number of ways to draw 2 of a suit is then

$$
M=36,504+158,184=194,688
$$

The odds are then

$$
p=\left(\frac{194.688}{270,725}\right)=0.71914
$$

$$
\mathrm{p}(\text { flush } \mid \text { drew } 2) *(\text { drew } 2)=0.04876 * 0.71914=0.03507
$$

Case D:

$$
\begin{aligned}
& \mathrm{p}(\text { flush } \operatorname{l} \text { drew } 1)=\left(\frac{(4 \text { suits pick } 1)(12 \text { cards pick } 4)}{(48 \text { cards pick } 4)}\right) \\
& \\
& =\left(\frac{\binom{4}{1}\binom{12}{4}}{\binom{48}{4}}\right)=\left(\frac{1,980}{195,580}\right)=0.01018
\end{aligned}
$$

$$
\mathrm{p}(\text { drew } 1)=\left(\frac{(13 \text { clubs pick } 1)(13 \text { diamonds pick } 1)(13 \text { hearts pick } 1)(13 \text { spades pick } 1)}{(52 \text { choose } 4)}\right)
$$

$$
=\left(\frac{\binom{13}{1}\binom{13}{1}\binom{13}{1}\binom{13}{1}}{\binom{52}{4}}\right)=\left(\frac{28,561}{270,725}\right)=0.10550
$$

$p($ flush \mid drew 1$)=0.01018 * 0.10550=0.00107$

The total odds of getting a flush are

$$
\begin{aligned}
\mathbf{p}(\text { flush }) & =\text { Case A }+ \text { Case B + Case C + Case D } \\
& =0.01056+0.03697+0.03507+0.00107 \\
& =0.08367
\end{aligned}
$$

Or the odds are 11.95: 1 odds against

The odds go up from $104: 1$ odds against to $11.95: 1$ odds agains if you're allowed to draw cards
8) Check your answer using a Monte Carlo simulation

With $1,000,000$ hands, the number of flushes are

```
    Flush = 76288
    Elapsed time is 77.767361 seconds.
```

>>
giving a 7.6288% chance of a flush (vs. 8.367% computed)

Code

\% ECE 341 Homework \#2
\% 4-Card draw looking for a flush
tic
Flush = 0;
clc
for io = 1:1e6
$\mathrm{X}=$ rand $(1,52)$;
[a,Deck] = sort(X);
Hand $=\operatorname{Deck}(1: 4)$;
Value $=\bmod (H a n d, 13)+1 ;$ Suit $=$ floor (Hand/13) +1 ;

N = Suit / 10;
for $i=1: 4$
for $j=1: 4$ if(Suit(i) == Suit(j)) $N(i)=N(i)+1$;
end
end
end
[a,b] = sort(N, 'descend');
Hand = Hand (b);
Value = Value(b); Suit = Suit(b);
$\mathrm{N}=\mathrm{N}(\mathrm{b})$;
$\mathrm{N}=\mathrm{floor}(\mathrm{N})$;
\% draw cards
if (N(1) == 4) end
if($N(1)==3)$ Hand(4) = Deck(5); end if(N(1) $==2)$ Hand(3:4) = Deck(5:6); end if(N(1) == 1) Hand(1:4) = Deck(5:8); end

Value $=\bmod (H a n d, 13)+1 ;$ Suit = floor(Hand/13) + 1;
$\mathrm{N}=$ Suit / 10;
for $i=1: 4$
for $j=1: 4$
if(Suit(i) == Suit(j))
N(i) = N(i) + 1;
end
end
end
$\mathrm{N}=\mathrm{floor}(\mathrm{N})$;
if (N(1) == 4) Flush = Flush + 1; end
end
[Flush]
toc

