ECE 341 - Homework \#3

Dice Games and z-Transform. Due Friday, May 21st
Please make the subject "ECE 341 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Farkle

1) Compute the odds of rolling a straight when rolling six dice

$$
\text { dice }=1,2,3,4,5,6
$$

The number of rolls possible are

$$
N=6^{6}=46,656
$$

For a straignt,

$$
\mathrm{M}=(6 \text { numbers, pick } 1)(5 \text { remaining numbers, pick } 1)(4 \text { remaining numbers, pick } 1) . . .
$$

$$
M=\binom{6}{1}\binom{5}{1}\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1}=6!=720
$$

The odds are then

$$
p=\left(\frac{720}{46,656}\right)=0.01543
$$

The odds of rolling a straight are $64.8: 1$ against
2) Compute the odds of rolling three pair (x and y are different. z can be any value including x or y)

$$
\text { dice }=x x y y z z \text { or } x x x y y
$$

xx yy zz
$M=(6$ numbers, pick 3$)(6$ spots for x, choose 2$)(4$ spots for y, choose 2$)(2$ spots for z, choose 2$)$

$$
M=\binom{6}{3}\binom{6}{2}\binom{4}{2}\binom{2}{2}=1800
$$

xx xx yy
$M=(6$ numbers choose 2$)(6$ spots for x choose 4$)(2$ spots for y choose 2$)$

$$
M=\binom{6}{2}\binom{6}{4}\binom{2}{2}=225
$$

The odds are then

$$
p=\left(\frac{1800+225}{46,656}\right)=0.043402
$$

The odds are 23.04: 1 against

z-Transforms

3) Find the inverse z-transform

$$
X=\left(\frac{0.01 z^{2}}{(z-1)(z-0.9)(z-0.8)}\right)
$$

Pull out z and use partial fractions

$$
\begin{aligned}
& X=\left(\frac{0.01 z}{(z-1)(z-0.9)(z-0.8)}\right) z \\
& X=\left(\frac{0.5}{z-1}+\frac{-0.9}{z-0.9}+\frac{0.4}{z-0.8}\right) z \\
& X=\left(\frac{0.5 z}{z-1}+\frac{-0.9 z}{z-0.9}+\frac{0.4 z}{z-0.8}\right)
\end{aligned}
$$

Converting back

$$
x(k)=0.5-0.9(0.9)^{k}+0.4(0.8)^{k} \quad \text { for } \mathrm{k}>=0
$$

4) Find the inverse z-transform

$$
X=\left(\frac{0.02(z+1)^{3}}{(z-1)(z-0.9)(z-0.8)}\right)
$$

Pull out a z and use partial fractions

$$
\begin{aligned}
& z X=\left(\frac{0.02(z+1)^{3}}{(z-1)(z-0.9)(z-0.8)}\right) z \\
& z X=\left(\left(\frac{8}{z-1}\right)+\left(\frac{-13.71}{z-0.9}\right)+\left(\frac{5.832}{z-0.8}\right)\right) z
\end{aligned}
$$

Take the inverse-z transform

$$
z x(k)=\left(8-13.71(0.9)^{k}+5.832(0.8)^{k}\right) u(k)
$$

Divide by z (delay by one sample)

$$
x(k)=\left(8-13.71(0.9)^{k-1}+5.832(0.8)^{k-1}\right) u(k-1)
$$

5) A new Nissan Leaf costs $\$ 31,760$. Assume you take out a 36 -month loan at 2.59% interest per year $(0.2158 \%$ per month). What will be the monthly payments? Solve using z-transforms.
Let $\mathrm{x}(\mathrm{k})$ be how much you owe at month k

$$
x(k+1)=1.002158 \cdot x(k)-p+31760 \cdot \delta(k)
$$

Take the z -transform. Assume you start making payments at $\mathrm{k}=1$ (rather than at month \#0)

$$
\begin{aligned}
& z X=1.002158 X-p\left(\frac{1}{x-1}\right)+31760 \\
& (z-1.002158) X=-p\left(\frac{1}{z-1}\right)+31760
\end{aligned}
$$

put over a common denominator

$$
\begin{aligned}
& (z-1.002158) X=\left(\frac{31760(z-1)-p}{z-1}\right) \\
& X=\left(\frac{31760(z-1)-p}{(z-1)(z-1.002158)}\right)
\end{aligned}
$$

Take the inverse z transform. Start with partial fraction expansion

$$
\begin{aligned}
& z X=\left(\frac{31760(z-1)-p}{(z-1)(z-1.002158)}\right) z \\
& z X=\left(\left(\frac{463.392 p}{z-1}\right)+\left(\frac{31760-463.392 p}{z-1.002158}\right)\right) z \\
& z x(k)=\left(463.392 p+31760 \cdot(1.002158)^{k}-463.392 p \cdot(1.002158)^{k}\right) u(k) \\
& x(k)=\left(463.392 p+31760 \cdot(1.002158)^{k-1}-463.392 p \cdot(1.002158)^{k-1}\right) u(k-1)
\end{aligned}
$$

You can also write this as

$$
x(k)=\left(31760 \cdot(1.002158)^{k-1}+463.392 p \cdot\left(1-1.002158^{k-1}\right)\right) u(k-1)
$$

At $\mathrm{k}=37$ (36 payments), the balance is zero

$$
\begin{aligned}
& x(37)=0=34,322.87-37.3933 p \\
& p=917.886
\end{aligned}
$$

