ECE 341 - Homework \#4

Binomial and Uniform Distributions. Due Monday, May 24th
Please make the subject "ECE $341 \mathrm{HW} \mathrm{\# 4}$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Binomial Distribution

Assume you toss a coin with a probability of a heads being 0.7

$$
X(z)=\left(\frac{0.3 z+0.7}{z}\right)
$$

1) Determine the probability of tossing 6 heads in 8 tosses

$$
p=\binom{8}{6}(0.7)^{6}(0.3)^{2}=0.2965
$$

2) Determine the probability distribution when tossing this same coin 8 times

Using Matlab and convolution

```
>> n1 = [0.3,0.7]
0.3000 0.7000
>> n2 = conv(n1,n1)
0.0900 0.4200 0.4900
>> n4 = conv(n2,n2)
0.0081 0.0756 0.2646 0.4116 0.2401
>> n8 = conv(n4,n4)
\begin{tabular}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0.0001 & 0.0012 & 0.0100 & 0.0467 & 0.1361 & 0.2541 & 0.2965 & 0.1977 & 0.0576
\end{tabular}
>>
```

NOAA has been keeping track of world weather for the past 141 years. 8 of the last 10 years have been the hottest on record. (the two that were not came in at \#11 and \#16).

3a) What is the probability of any given year being one of the 10 hottest on record (i.e. what is p ?)

$$
p=10 / 141
$$

3b) What is the probability of 8 of the last 10 years being the hottest on record? (i.e. toss a coin and get 9 heads out of 10 tosses)

$$
p=\binom{10}{8}\left(\frac{10}{141}\right)^{8}\left(\frac{131}{141}\right)^{2}=0.000000024864
$$

The odds are 40.2 million : 1 against this happening by chance.

Uniform Distribution

Assume a fair six-sided die:

$$
Y(z)=\left(\frac{1}{6}\right)\left(\frac{z^{5}+z^{4}+z^{3}+z^{2}+z+1}{z^{6}}\right)
$$

4) Asume you sum five dice (5d6). Determine the

- pdf
- mean, and
- standard deviation

```
>> d1 = [0,1,1,1,1,1,1]';
>> d1 = [0,1,1,1,1,1,1]' / 6;
>> d2 = conv(d1,d1);
>> d4 = conv(d2,d2);
>> d5 = conv(d1,d4);
>> bar(d5)
```


The mean is

$$
\begin{aligned}
\bar{x} & =\sum x \cdot p(x) \\
\gg & =\operatorname{sum}\left(\mathrm{N} . .^{*} \mathrm{~d} 5\right) \\
\mathrm{x} & =17.5000
\end{aligned}
$$

The standard deviation is

```
        s}\mp@subsup{s}{}{2}=\sump(x)\cdot(x-\overline{x}\mp@subsup{)}{}{2
>> s2 = sum(d5 .* ( (N - x).^2 ) )
s2 = 14.5833 the variance
>> s = sqrt(s2)
    s = 3.8188 the standard deviation
```

5) Asume you sum ten dice (10d6). Determine the

- pdf
- mean, and
- standard deviation


```
>> d1 = [0,1,1,1,1,1,1]';
>> d1 = [0,1,1,1,1,1,1]' / 6;
>> d2 = conv(d1,d1);
>> d4 = conv(d2,d2);
>> d8 = conv(d4,d4);
>> d10 = conv(d2,d8);
>> bar(d10)
>> N = [0:60]';
>> x = sum(N .* d10)
x = 35.0000 the mean
>> s2 = sum(d10 .* ( (N - x).^2 ) )
s2 = 29.1667 the variance
>> s = sqrt(s2)
s = 5.4006 the standard deviation
>>
```

