ECE 341-Homework \#8

Queueing Theory \& Normal Distributions. Due Tuesday, June 1st
Please make the subject "ECE 341 HW\#8" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Queueing Theory

Assume you are running a fast-food restraunt.

- The time between customers arriving at a restaraunt is an exponential distribution with a mean of 100 seconds.
- The time it takes to serve each customer is an exponential distribution with a mean of 50 seconds.

1) Run a single Monte-Carlo simulation for this restaraunt over the span of one hour.

- Give the formula for each column in you simulation
- What is the longest waiting time for a customer in your simulation?
- What is the largest queue over the span of one hour?

Arrival Times:
pdf:

$$
p(t)=0.01 \cdot \exp (-0.01 t) \cdot u(t)
$$

cdf:

$$
\begin{aligned}
& c(t)=\int p(t) \cdot d t \\
& c(t)=(1-\exp (-0.01 t)) u(t)
\end{aligned}
$$

Solving for t

$$
t_{a}=-100 \ln \left(1-c_{a}\right)
$$

Service Times

$$
t_{s}=-50 \ln \left(1-c_{s}\right)
$$

Generating random times for arrival and service:

```
>> ca = rand(100,1);
>> ta = -100*log(1-ca);
>> cs = rand(100,1);
>> ts = -50*log(1-cs);
>> [ca(1:5),ta(1:5),cs(1:5),ts(1:5)]
ans =
\begin{tabular}{rrrr} 
p(ta) & \multicolumn{1}{c}{ ta } & p(ts) & \multicolumn{1}{c}{ ts } \\
0.1622 & 17.6955 & 0.6443 & 103.3719 \\
0.7943 & 158.1261 & 0.3786 & 47.5795 \\
0.3112 & 37.2826 & 0.8116 & 166.9084 \\
0.5285 & 75.1906 & 0.5328 & 76.1053 \\
0.1656 & 18.1101 & 0.3507 & 43.1902
\end{tabular}
>>
```

- $\mathrm{d} 4=\mathrm{d} 3+\mathrm{b} 4$
- $\mathrm{e} 4=\min (\mathrm{d} 4, \mathrm{f} 3)$
- $\mathrm{f} 4=\mathrm{e} 4+\mathrm{c} 4$
- $\mathrm{g} 4=\operatorname{sum}\left((\mathrm{f} 3>\mathrm{d} 4)^{*} 1+(\mathrm{f} 2>\mathrm{d} 4)^{*} 1+(\mathrm{f} 1>\mathrm{d} 4)^{*} 1\right)$
- $\mathrm{h} 4=\mathrm{e} 4-\mathrm{d} 4$
arrival time
service time
finish time
queue size
wait time

a	b	c	d	e	f	g	h
Customer	ta	ts	Arrival Time	Service Time	Finish Time	Queue Size	Wait Time
0	0	0	0	0	0	0	0
1	17.7	103.4	17.7	17.7	121.1	0	0
2	158.1	47.6	175.8	175.8	223.4	0	0
3	37.3	166.9	213.1	223.4	390.3	1	10.3
4	75.2	76.1	288.3	390.3	466.4	1	102
5	18.1	43.2	306.4	466.4	509.6	2	160
6	92.1	279.7	398.5	509.6	789.3	2	111.1
7	30.5	208.7	429	789.3	998	3	360.3
8	106.2	79.9	535.2	998	1,077.9	2	462.8
9	116.9	97.4	652.1	1,077.9	1,175.3	3	425.8
10	137.9	88.4	790	1,175.3	1,263.7	3	385.3
11	59.9	23.3	849.8	1,263.7	1,287	4	413.9
12	8.8	35.8	858.6	1,287	1,322.9	5	428.4
13	26	63.7	884.6	1,322.9	1,386.5	6	438.3
14	244.6	26.2	1,129.2	1,386.5	1,412.7	5	257.3
15	16.5	186	1,145.7	1,412.7	1,598.7	6	267
16	174.8	21.7	1,320.5	1,598.7	1,620.4	4	278.2
17	77.3	25.6	1,397.8	1,620.4	1,646	3	222.6
18	555.6	18.7	1,953.3	1,953.3	1,972.1	0	0
19	8.1	25.8	1,961.5	1,972.1	1,997.9	1	10.6
20	58.5	57.2	2,019.9	2,019.9	2,077.1	0	0
21	11.3	37.3	2,031.2	2,077.1	2,114.4	1	45.9
22	326.7	256.9	2,358	2,358	2,614.8	0	0
23	0.5	56.2	2,358.4	2,614.8	2,671.1	1	256.4
24	149.1	20.4	2,507.6	2,671.1	2,691.5	2	163.5
25	170	235.3	2,677.5	2,691.5	2,926.8	1	14
26	203	390	2,880.6	2,926.8	3,316.7	1	46.2
27	8.8	57.8	2,889.4	3,316.7	3,374.5	2	427.3
28	51	11.8	2,940.4	3,374.5	3,386.3	2	434.1
29	30.1	29.8	2,970.5	3,386.3	3,416.2	3	415.8
30	161	52.5	3,131.5	3,416.2	3,468.7	4	284.7
31	56.5	90.4	3,188	3,468.7	3,559.1	5	280.7
32	241.5	30.4	3,429.5	3,559.1	3,589.5	2	129.6
33	20.1	92.3	3,449.6	3,589.5	3,681.8	3	139.9
34	30.6	124.2	3,480.2	3,681.8	3,806	3	201.6

Normal Distribution

The low for the month has been measured at Hector Airport since 1942. The mean and standard deviations are:

Month	May	June	July	Aug	Sept	Oct
Mean	27.4013 F	40.2179 F	46.2949 F	43.2321 F	30.5526 F	19.3462 F
st dev	4.4236 F	3.9924 F	3.9481 F	4.1435 F	4.8050 F	5.1265 F

http://www.bisonacademy.com/ECE111/Code/Fargo_Weather_Monthly_Low.txt
2) What is the probability that we will have a killing frost (temperature drops below 30F) in

- August
- September
- October

August:

$$
\begin{aligned}
& \begin{array}{l}
z=\left(\frac{30-43.2321}{4.1435}\right)=-3.1934 \\
\mathrm{p}=0.001 \quad \text { from StatTrek }
\end{array}
\end{aligned}
$$

There is a 0.1% chance of a killing frost in August

September

$$
\begin{array}{ll}
z=\left(\frac{30-30.5526}{4.8050}\right)=- & 0.1150 \\
\mathrm{p}=0.454 \quad \text { from StatTrek }
\end{array}
$$

There is a 45.4\% chance of a killing frost in September

October

$$
\begin{aligned}
& z=\left(\frac{30-19.346}{5.1265}\right)=2.0782 \\
& \mathrm{p}=0.981 \quad \text { from StatTrek }
\end{aligned}
$$

There is a 98.1% chance of a killing frost in October

Rainfall

The rainfall in Fargo each month (in inches) is

Month	May	June	July	Aug	Sept	Oct
Mean	2.6549	3.5025	2.9668	2.6529	2.1344	1.694
st dev	1.6536	2.1054	1.9505	1.7339	1.4913	1.4619

3) What is the probability that we will get more than 6 inches of rain in June?

$$
\begin{aligned}
& z=\left(\frac{3.5025-6}{2.1054}\right)=-1.1862 \\
& p=0.118 \quad \text { from StatTrek }
\end{aligned}
$$

There is an 11.8\% chance we'll get more than 6" or rain in June
4) What is the probability that the total rainfall for these six months will be less than 6"?

The sum of normal distrubutions is a normal distribution (central limit theorem)

- The mean is the sum of the means
- The variance is the sum of the variances

Mean $=15.6055$
Variance:

$$
1.6536^{2}+2.1054^{2}+1.9505^{2}+1.7339^{2}+1.4913^{2}+1.4619^{2}=18.3391
$$

Standard Deviation

$$
s=\sqrt{18.3391}=4.2824
$$

The z-score for $6^{\prime \prime}$ of rain over six months is

$$
z=\left(\frac{6-18.3391}{4.2824}\right)=-2.8813
$$

$$
\mathrm{p}=0.002 \text { (from StatTrek) }
$$

There is a 0.2% chance of getting less than $6^{\prime \prime}$ of rain over these six months
500:1 odds against, i.e. a 500-year droubt

