ECE 341 - Homework \#11

Markov Chains. Due Monday, June 7th

Please make the subject "ECE 341 HW\#11" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Problem 1 \& 2) Two teams, A and B, are playing a match made up of N games. For each game

- Team A has a 50% chance of winning
- There is a 10% chance of a tie, and
- Team B has a 40% chance of winning

In order to win the match, a team must be up by 2 games.

1) Determine the probabilty that team A wins the match after k games for $\mathrm{k}=\{0 \ldots 10\}$ using matrix multiplication.

Let

$$
X=\left[\begin{array}{c}
\mathrm{A} \text { is }+2 \text { (A wins) } \\
\mathrm{A} \text { is }+1 \\
\text { even } \\
\mathrm{A} \text { is }-1 \\
\mathrm{~A} \text { is }-2 \text { (B wins) }
\end{array}\right]
$$

The state transistion matrix is then

$$
\begin{aligned}
& X(k+1)=\left[\begin{array}{ccccc}
1 & 0.5 & 0 & 0 & 0 \\
0 & 0.1 & 0.5 & 0 & 0 \\
0 & 0.4 & 0.1 & 0.5 & 0 \\
0 & 0 & 0.4 & 0.1 & 0 \\
0 & 0 & 0 & 0.4 & 1
\end{array}\right] X \\
& \gg A=[1,0.5,0,0,0 ; 0,0.1,0.5,0,0 ; 0,0.4,0.1,0.5,0 ; 0,0,0.4,0.1,0 \text {; } \\
& 0,0,0,0.4,1]
\end{aligned}
$$

```
>> X0 = [0;0;1;0;0]
    0
    0
    1
    0
    0
>> A^10 * X0
    0.5772 A wins after 10 games
    0.0168
    0.0231
    0.0135
    0.3694 B wins after 10 games
```

2) Determine the z-transform for the probability that A wins the match after k games

- From the z transforms, determine the explicit function for $\mathrm{p}(\mathrm{A})$ wins after game k .

```
>>C=[1,0,0,0,0]
C = 1 0
>> G = ss(A, X0, C, 0, 1);
>> tf(G)
        0.25 z - 0.025
z^4 - 1.3 z^3 - 0.07 z^2 + 0.409 z - 0.039
Sampling time (seconds): 1
>> zpk(G)
    0.25 (z-0.1)
    (z-1) (z-0.7325) (z+0.5325) (z-0.1)
    Sampling time (seconds): 1
```

meaning

$$
Y=\left(\frac{0.25(z-0.1)}{(z-1)(z-0.7325)(z+0.5325)(z-0.1)}\right) z
$$

Using partial fractions

$$
Y=\left(\left(\frac{0.60984}{z-1}\right)+\left(\frac{-0.7388}{z-0.7325}\right)+\left(\frac{-0.66553}{z+0.5325}\right)+\left(\frac{0}{z-0.1}\right)\right) z
$$

Converting back to time

$$
y(k)=\left(0.60984-0.7388(0.7325)^{k}-0.66553(-0.5325)^{k}\right) u(k)
$$

3) Two players are playing a game of tennis. To win a game, a player must win 4 points and be up by 2 points.

- If player A reaches 4 points and player B has less than 3 points, the game is over and player A wins.
- If player A reaches 4 points and player B has 3 points, then the game reverts to 'win by 2 ' rules. Both players keep playing until one of them is up by 2 games.

Supppose:

- Player A has a 70% chance of winning any given point
- Player B has a 30% chance of winning any given point.

What is the probabilty that player A wins the game (first to 4 games, win by 2)?

- Note: This is a combination of a binomial distribution (A has 4 points while B has 0,1 , or 2 points) along with a Markov chain (A and B both have 3 points, at which point it becomes a win-by-2 series)

A wins in 4 games: 4-0

$$
\mathrm{p}=\binom{4}{4}(0.7)^{4}(0.3)^{0}=0.2401
$$

A wins in 5 games: 4-1

- a wins game 5
- a wins 3 of 4 previous games

$$
p=(0.7)\binom{4}{3}(0.7)^{3}(0.3)^{1}=0.28812
$$

A wins in 6 games: 4-2

- A wins game 6
- A wins 3 of 5 previous games

$$
p=(0.7)\binom{5}{3}(0.7)^{3}(0.3)^{2}=0.21609
$$

A wins after being 3-3 (and you enter a Markov chain).
The probability of being 3-3 is

$$
p=\binom{6}{3}(0.7)^{3}(0.3)^{3}=0.18522
$$

The probability of A winning once you at 3-3 is a Markov chain like problem \#1

$$
X(k+1)=\left[\begin{array}{ccccc}
1 & 0.7 & 0 & 0 & 0 \\
0 & 0 & 0.7 & 0 & 0 \\
0 & 0.3 & 0 & 0.7 & 0 \\
0 & 0 & 0.3 & 0 & 0 \\
0 & 0 & 0 & 0.3 & 1
\end{array}\right] X
$$

Inputting this into Matlab and taking $\mathrm{A}^{\wedge} 100$ results in

```
>>A}=[1,0,0,0,0;0.7,0,0.3,0,0;0,0.7,0,0.3,0;0,0,0.7,0,0.3;0,0,0,0,1]
A =
\begin{tabular}{rrrrr}
1.0000 & 0.7000 & 0 & 0 & 0 \\
0 & 0 & 0.7000 & 0 & 0 \\
0 & 0.3000 & 0 & 0.7000 & 0 \\
0 & 0 & 0.3000 & 0 & 0 \\
0 & 0 & 0 & 0.3000 & 1.0000
\end{tabular}
>> A^100
ans =
\begin{tabular}{rrrrrr}
1.0000 & 0.9534 & 0.8448 & 0.5914 & 0 \\
0 & 0.0000 & 0 & 0.0000 & 0 \\
0 & 0 & 0.0000 & 0 & 0 \\
0 & 0.0000 & 0 & 0.0000 & 0 \\
0 & 0.0466 & 0.1552 & 0.4086 & 1.0000
\end{tabular}
```

A has an 84.48% chance of winning given that the game is at 3-3 (love).
The total probability is then

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~A})=\mathrm{p}(4-0)+\mathrm{p}(4-1)+\mathrm{p}(4-2)+\mathrm{p}(\mathrm{~A} \text { wins } \mid 3-3) * \mathrm{p}(3-3) \\
& \mathrm{p}(\mathrm{~A})=0.2401+0.2881+0.2161+(0.8448)(0.1852) \\
& \mathbf{p}(\mathbf{A} \text { wins })=\mathbf{0 . 9 0 0 8}
\end{aligned}
$$

Or use a Monte Carlo simulation

```
% Tennis
p = 0.7;
Awins = 0;
for n=1:1e5
        A = 0;
        B = 0;
        Winner = 0;
        games = 0;
        while( Winner == 0)
            games = games + 1;
            if(rand < p)
                A = A + 1;
            else
                    B = B + 1;
            end
            if( (A>=4) * (A >= B+2))
                Winner = 1;
                Awins = Awins + 1;
            end
            if( (B>=4) * (B >= A+2))
                Winner = 2;
            end
        end
        % disp([Winner, games])
end
Awins / 1e5
ans = 0.9003
ans = 0.9015
ans = 0.9003
Elapsed time is 4.143197 seconds.
```

>>

A wins about 90.0% of the matches

