ECE 341 - Homework #14

Chi-Squared Tests. Due Thursday, June 11th

Please make the subject "ECE 341 HW#13" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Fair Die

The following Matlab code generates a random number from 1..6 (6-sided die).

1) Use a chi-squared test to determine if it is a fair die (all numbers equal probability) with 120 rolls.

RESULT =	18	27	25	19	14	17
----------	----	----	----	----	----	----

Roll	р	np	Ν	chi squared
1	1/6	20	18	0.2
2	1/6	20	27	2.45
3	1/6	20	25	1.25
4	1/6	20	19	0.05
5	1/6	20	14	1.8
6	1/6	20	17	0.45
			Total	6.2

From StatTrek, a chi-squared score of 6.2 with 5 degrees of freedom corresponds to a probability of 0.71

There is a 71% chance that this is not a fair die

 Enter a value for degrees of freedom Enter a value for one, and only one, boxes. Click the Calculate button to compared to the compared	n. , of the remaining unshad oute values for the other te	ed text ext boxes.
Degrees of freedom	5	
Chi-square critical value (CV)	6.2	
P(X ² < 6.2)	0.71	
P(X ² > 6.2)	0.29	

2) Use a chi-squared test to determine if it is a fair die (all numbers equal probability) with 120,000 rolls.

RESULT =	19985	20056	19871	20013	20016	20059
	1))00	20000	1 2 0 7 1	20010	20010	20055

Setting up a chi-squared table

Roll	р	np	Ν	chi squared
1	1/6	20,000	19,985	0.0113
2	1/6	20,000	20,056	0.1568
3	1/6	20,000	19,871	0.8321
4	1/6	20,000	20,013	0.0084
5	1/6	20,000	20,016	0.0128
6	1/6	20,000	20,059	0.1741
			Total	1.1954

From StatTrek, a chi-squared score of 1.19 corresponds to a probability of 0.06

There is a 6% chance that this is a loaded die

 Enter a value for degrees of freedom Enter a value for one, and only one, boxes. Click the Calculate button to comp 	n. of the remaining unshaded oute values for the other tex	l text t boxes.
Degrees of freedom	5	
Chi-square critical value (CV)	1.1954	
P(X ² < 1.1954)	0.06	
P(X ² > 1.1954)	0.94	

Loaded Die

The following Matlab code generates a random number from 1..6 (6-sided die).

```
RESULT = zeros(1,6);
for n=1:120
    if(rand < 0.04)
        d6 = 6;
    else
        d6 = ceil( 6*rand );
    end
    RESULT(d6) = RESULT(d6) + 1;
end
RESULT
```

3) Use a chi-squared test to determine if it is a fair die (all numbers equal probability) with 120 rolls.

Roll	р	np	Ν	chi squared
1	1/6	20	29	4.05
2	1/6	20	20	0
3	1/6	20	16	0.8
4	1/6	20	9	6.05
5	1/6	20	24	0.8
6	1/6	20	22	0.2
			Total	11.9

RESULT = 29 20 16 9 24 22

From StatTrek, this corresponds to a probability of 0.96

There is a 96% chance that this is a loaded die

4) Use a chi-squared test to determine if it is a fair die (all numbers equal probability) with 120,000 rolls.

RESULT = 19214 19171 19237 19317 19165 23896

Roll	р	np	Ν	chi squared
1	1/6	20,000	19,214	30.8898
2	1/6	20,000	19,171	34.3621
3	1/6	20,000	19,237	29.1085
4	1/6	20,000	19,317	23.3245
5	1/6	20,000	19,165	34.8613
6	1/6	20,000	23,896	758.9408
			Total	911.4868

From StatTrek, is is at least 99.995% certain that the die is loaded.

Am I psychic?

5) Take a deck of playing cards. Predict the suit of the top card then reveal it. If correct, place it in one pile. If incorrect, place it in another pile.

5a) How many times were you correct? Incorrect?

- 10 correct
- 42 incorrect

5b) From your results, determine the odds that you are guessing (25% chance of being correct) using a chi-squared test.

Roll	р	np	Ν	chi squared
correct	1/4	13	10	0.6923
incorrect	3/4	39	42	0.2308
			Total	0.9231

From StatTrek, a chi-squared score of 0.9231 corresponds to a probability of 0.66

There is a 66% chance that I'm not just guessing (i.e. I'm somewhat psychic)

 Enter a value for degrees of freedom. 						
 Enter a value for one, and only one, of the remaining unshaded text boxes. 						
Click the Calculate button to comp	Click the Calculate button to compute values for the other text boxes.					
Degrees of freedom	1					
Chi-square critical value (C∀)	0.9231					
P(X ² < 0.9231) 0.66						
P(X ² > 0.9231)	0.34					

Poisson approximation for a binomial distribution.

5) Let X be the number of 1's and 2's you get when you roll 60 dice. The Poisson approximation for the pdf is

$$\lambda = np = 20$$

$$\binom{60}{x} \binom{2}{6}^{x} \binom{4}{6}^{60-x} \approx \binom{1}{x!} 20^{x} e^{-20}$$

- Use Matlab to count the number of 1's and 2's you get when you roll 60 dice
- Repeat 100 times
- Check whether the result is consistent with a Poisson distribution with $\lambda = np = 20$ using a Chi-squred test

Experimental Results (bar graph) and Poisson approximation

bin	р	np	Ν	chi squared
1-10	0.0108	1.08	0	1.08
11-15	0.1457	14.57	14	0.0223
16-20	0.4026	40.26	47	1.1284
21-25	0.3287	32.87	34	0.0388
26-30	0.0987	9.87	4	3.4911
31-99	0.0135	1.35	1	0.0907
			Total	5.8513

From StatTrek, a chi-squared score of 5.85 corresponds to a probability of 0.68

There is a 68% chance that the data is inconsistent with a Poisson distribution