ECE 341 - Homework \#15

F-Test and ANOVA. Due Friday, June 12th
Please make the subject "ECE $341 \mathrm{HW} \# 15$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Test of a 3+ Populations

1) Use Matlab to generate 3 sets of random numbers:
```
A = 50 + 5 * randn (5,1);
B = 55 + 3 * randn (5,1);
C = 57 + 4 * randn(5,1);
```

Determine if the means are the same using an ANOVA test.

```
>> A = 50 + 5 * randn (5,1)
    48.9752
    49.3793
    57.4485
    57.0452
    57.0860
>> B = 55 + 3 * randn (5,1)
    57.0145
    51.3775
    57.1517
    59.8907
    56.4667
>> C = 57 + 4 * randn (5,1)
    61.1388
    59.9075
    55.7862
    58.1755
    53.8509
>> Na = length(A);
>> Nb = length(B);
>> NC = length(C);
> N = Na + Nb + NC
N = 15
k = 3;
>> G = mean([A;B;C])
G = 56.0463
>> MSSb = ( Na* (mean (A) -G)^2 + Nb* (mean (B) -G)^2 + NC*(mean(C) -G)^2 ) / (k-1)
MSSb = 18.3257
>> MSSw = ( (Na-1)*var(A) + (Nb-1)*var(B) + (NC-1)*var(C) ) / (N - k)
MSSW = 12.5850
>> F = MSSb / MSSw
F= 1.4562
```

From StatTrek,

- m (numerator) has 2 degrees of freedom ($\mathrm{k}-1$)
- n (denominator) has 12 degrees of freedom ($\mathrm{N}-\mathrm{k}$)

There is a 73\% chance that the populations have a different mean

- meaning you probably shouldn't lump these together and treat them as a single population with a sample size of 15

- Enter values for degrees of freedom. - Enter a value for one, and only one, of the remaining text boxes. - Click the Calculate button to compute a value for the blank text box.	
Degrees of freedom (v_{1})	2
Degrees of freedom (v_{2})	12
Cumulative prob: $P(F \leq 1.4562)$	0.73
f value	1.4562

2) Have three different people take the reaction-time test
or, use the following data from homework \#13:

- A: $\{211,220,196,201,212\} \mathrm{ms}$
- B: $\{301,313,287,368,281\} \mathrm{ms}$
- C: $\{268,298,297,304,377\} \mathrm{ms}$

Determine if the means are the same using an ANOVA test.
Using Matlab

```
>> A = [211, 220, 196, 201, 212]';
>> B = [301, 313, 287, 368, 281]';
>> C = [268, 298, 297, 304, 377]';
>> Na = length(A);
>> Nb = length(B);
>> Nc = length(C);
>> N = Na + Nb + Nc
N = 15
>> k = 3;
>> G = mean([A;B;C])
G = 275.6000
>> MSSb = (Na* (mean (A)-G)^2 + Nb* (mean(B)-G)^2 + Nc*(mean(C)-G)^2 ) / (k-1)
MSSb = 1.7138e+004
>> MSSw = ( (Na-1)*var(A) + (Nb-1)*var(B) + (NC-1)*var(C) ) / (N - k)
MSSw = 981.7333
>> F = MSSb / MSSW
F = 17.4573
```

From StatTrek, I'm 99.97% certain that the populations have different means

- meaning you shouldn't lump these together and treat them as a single population with a sample size of 15

- Enter values for degrees of freedom.
- Enter a value for one, and only one, of the remaining text boxes.
- Click the Calculate button to compute a value for the blank text
box.
Degrees of freedom $\left(v_{1}\right)$ Degrees of freedom $\left(v_{2}\right)$ Cumulative prob: $\mathrm{P}(\mathrm{F} \leq 17.4573)$ f value
17.4573

