ECE 341 - Homework \#8

Queueing Theory \& Normal Distributions.

Queueing Theory

Assume you are running a fast-food restraunt.

- The time between customers arriving at a restaraunt is an exponential distribution with a mean of 90 seconds.
- The time it takes to serve each customer is an exponential distribution with a mean of 60 seconds.

1) Run a single Monte-Carlo simulation for this restaraunt over the span of one hour.

- Give the formula for each column in you simulation
- What is the longest waiting time for a customer in your simulation?
- What is the largest queue over the span of one hour?

Normal Distribution

The mean and standard deviation for a 6 and 8 -sided die are

$$
\begin{array}{ll}
\mu_{d 6}=3.50 & \mu_{d 8}=4.50 \\
\sigma_{d 6}=1.7078 & \sigma_{d 8}=2.291 \\
\sigma_{d 6}^{2}=2.9166 & \sigma_{d 8}^{2}=5.2487
\end{array}
$$

2) Let Y be the sum of rolling five 6 -sided dice (5d6) plus five 8 -sided dice (5d8).

$$
\mathrm{Y}=5 \mathrm{~d} 6+5 \mathrm{~d} 8
$$

a) What is the mean and standard deviation of Y ?
b) Using a normal approximation, what is the 90% confidence interval for Y ?
c) Using a normal approximation, what is the probability that the sum the dice will be more than 49.5 ?
3) Check your answer using a Monte-Carlo simulation in Matlab with 100,000 rolls:

```
N = 0;
for i=1:1e5
    Y = sum( ceil( 6*rand(5,1) ) ) + sum( ceil( 8*rand(5,1) ) );
    if(Y > 49.5)
        N = N + 1;
        end
    end
N / 1e5
```

4) Fargo's high temperature in the month of June has been measured by Hector Airport since 1942.

- Determine the mean and standard deviation for the high in June
- Assuming a normal distribution, determine the probability that the high in June will exceed 100F this year (note: data set is linked on Bison Academy)

